June 28, 2019 File No. 262018.063 Ms. Corina Forson Chief Hazards Geologist State of Washington Department of Natural Resources Washington Geological Survey 111 Washington Street SE Olympia, Washington 98504 Mr. Scott Black Program Development Manager State of Washington Office of Superintendent of Public Instruction 600 Washington Street Olympia, Washington 98504 Subject: Department of Natural Resources Washington Geological Survey, School Seismic Safety Assessment Project, Contract No. AE 410 - Seismic Evaluation for Longview School District Dear Ms. Forson and Mr. Black: Reid Middleton and our consultant team, under the direction of The Department of Natural Resources (DNR) Washington Geological Survey (WGS) School Seismic Safety Project, have conducted seismic evaluations of 222 school buildings and 5 fire stations throughout Washington State. This letter is transmitting the results of these seismic assessments for each school district that graciously participated in this statewide study. We understand that you will be forwarding this letter and the accompanying seismic screening reports to each school district for their reference and use. Many disparate studies on improving the seismic safety of our public school buildings have been performed over the last several decades. Experts in building safety, geologic hazards, emergency management, education, and even the news media have been asserting for decades that seismic risks in older public school buildings represent a risk to our communities. The time to act is now, before we have a damaging earthquake and/or tsunami that could be catastrophic. This statewide school seismic safety assessment project provides a unique opportunity to draw attention to the need for statewide seismic safety policies and funding on behalf of all school districts that will help enable school districts to increase the seismic safety of their older buildings to make them safer for students, teachers, staff, parents, and the community. It is not the intent of this study to create an unfunded mandate for school districts to seismically upgrade their schools without associated funding or statewide seismic safety policy support. The overall goal of this study was to screen and evaluate the current levels of seismic vulnerabilities of a statewide selection of our older public school buildings and to use the data and information to help quantify funding and policy needs to improve the seismic safety of our public schools. In this process, we are using the information to inform not only the Governor and the Legislature of the policy and funding needs for seismically safe schools but also the school districts that participated in the study. EVERETT 728 134th Street SW Suite 200 Everett, WA 98204 425 741-3800 #### School Buildings Evaluated in the Longview School District We appreciate Longview School District's participation and invaluable assistance in this statewide project. The following school district buildings were included as part of this study: - 1. R.A. Long High School, Gym - 2. R.A. Long High School, Main Building - 3. R.A. Long High School, RA Long Annex - 4. R.A. Long High School, Science Wing - 5. R.A. Long High School, Shop Building The seismic screening of these buildings was performed using the American Society of Civil Engineers' Standard 41-17, *Seismic Evaluation and Retrofit of Existing Buildings* (ASCE 41-17), national standard Tier 1 structural and nonstructural seismic screening checklists specific to each building's structure type. The WGS also conducted seismic site class assessments to measure the shear wave velocity and determine the soil site class at each campus. Site class is an approximation of how much soils at a site will amplify earthquake-induced ground motions and is a critical parameter used in seismic design. Reid Middleton subsequently used this information in their seismic screening analyses. The following table is a list of available seismic assessment information used in our study: | School Building | Year
Constructed | FEMA Building
Classification | Structural Drawings
Available for Review | |---|---------------------|--|---| | R.A. Long High School, Gym | 1927 | Tilt-Up Concrete Shear Walls | Yes | | R.A. Long High School, Main
Building | 1927 | Unreinforced Masonry Bearing
Walls with rigid Diaphragm | Yes | | R.A. Long High School, R.A.
Long Annex | 1963 | Wood Frame | No | | R.A. Long High School, Science Wing | 1935 | Reinforced Masonry Walls with Flexible Diaphragms | Yes | | R.A. Long High School, Shop
Building | 1942 | Unreinforced Masonry
Bearing Walls | Yes | Detailed descriptions of the seismic screening evaluations of these buildings can be found in the individual building reports and the ASCE 41-17 Tier 1 screening checklist documents enclosed with this letter. This information will also be available for download on the WGS website: https://www.dnr.wa.gov/programs-and-services/geology/geologic-hazards/earthquakes-and-faults/school-seismic-safety. Department of Natural Resources Washington Geological Survey School Seismic Safety Project – Longview School District June 28, 2019 File No. 262018.063 Page 3 These Tier 1 seismic screening checklists are often the first step employed by structural engineers when trying to determine the seismic vulnerabilities of existing buildings and to begin a process of mitigating these seismic vulnerabilities. School district facilities management personnel and their design consultants should be able to take advantage of this information to help inform and address seismic risks in existing or future renovation, repair, or modernization projects. It is important to note that information used for these school seismic screenings was limited to available construction drawings and limited site observations by our team of licensed structural engineers to observe the general conditions and configuration of each building being seismically screened. In many cases, construction drawings were not available for review as noted in the table above. Due to the limited scope of the study, our team of engineers were not able to perform more-detailed investigations above ceilings, behind wall finishes, in confined spaces, or in other areas obstructed from view. Where building component seismic adequacy was unknown due to lack of available information, the unknown conditions were indicated as such on the ASCE 41-17 Tier 1 checklists. Additional field investigations are recommended for the "unknown" seismic evaluation checklist items if more-definitive determinations of seismic safety compliance and further development of seismic mitigation strategies are desired. #### **Nonstructural Seismic Screening** The enclosed ASCE 41-17 Tier 1 Nonstructural Seismic Screening checklists can provide immediate guidance on seismic deficiencies in nonstructural elements. Mitigating the risk of earthquake impacts from these nonstructural elements should be addressed as soon as practical by school districts. Some nonstructural elements may be easily mitigated by installing seismic bracing of tall cabinets, moving heavy contents to the bottom of shelving, and adding seismic strapping or bracing to water tanks and overhead elements (light fixtures, mechanical units, piping, fire protection systems, etc.). It is often most economical to mitigate nonstructural seismic hazards when the building is already undergoing mechanical, electrical, plumbing, or architectural upgrades or modernizations. Enclosed with these nonstructural seismic screening checklists are excerpts from the Federal Emergency Management Agency (FEMA) publication E-74 entitled, *Reducing the Risks of Nonstructural Earthquake Damage* (FEMA E-74). We have included these FEMA publication excerpts to help illustrate typical seismic mitigation measures that can potentially be implemented by district facilities and maintenance personnel. #### **Structural Seismic Screening** The enclosed ASCE 41-17 Tier 1 Structural Seismic Screening checklists have evaluation statements that are reviewed for specific building elements and systems to determine if these items are seismically compliant, noncompliant, not applicable, or unknown. These evaluation statements provide guidance on which structural systems and elements have identified seismic deficiencies and should be investigated further. Further seismic evaluations beyond these seismic screening checklists typically consist of more-detailed seismic structural analyses to better define the seismic vulnerabilities and risks. This information is then used to determine cost-effective ways to seismically improve these buildings with stand-alone seismic upgrade Department of Natural Resources Washington Geological Survey School Seismic Safety Project – Longview School District June 28, 2019 File No. 262018.063 Page 4 projects or incrementally as part of other ongoing building maintenance, repair, or modernization projects. Consequently, implementing seismic structural mitigation strategies typically requires that they be developed as a part of longer-term capital improvements and modernization programs developed by the school district and their design consultants. #### **Next Steps** Due to the screening nature of the ASCE 41-17 Tier 1 procedures, an in-depth seismic evaluation and analysis of these buildings may be needed before detailed seismic upgrades or improvements, conceptual designs, and probable construction cost estimates are developed. If you have any questions or comments regarding the engineering reports or would like to discuss this further, please contact us. Sincerely, David D. Goons David B. Swanson, P.E., S.E. Principal, LEED AP, F.SEI
Limitations The professional services described in this document were performed based on available information and limited visual observation of the structures. No other warranty is made as to the professional advice included in this document. This document has been prepared for the exclusive use of the Department of Natural Resources, the Office of the Superintendent of Public Instruction, and this school district and is not intended for use by other parties, as it may not contain sufficient information for other parties' purposes or their uses. ## 1. Longview, R. A. Long High School, Gym #### 1.1 Building Description Building Name: Gym Facility Name: R. A. Long High School District Name: Longview ICOS Latitude: 46.141 ICOS Longitude: -122.955 **ICOS** County/District ID: 8122 ICOS Building ID: 18567 ASCE 41 Bldg Type: PC1 Enrollment: 928 Gross Sq. Ft.: 44,541 Year Built: 1927 Number of Stories: 1 S_{XS BSE-2E}: 0.909 S_{X1 BSE-2E}: 0.872 ASCE 41 Level of Seismicity: Site Class: E V_{S30}(m/s): 166 Liquefaction Moderate to High Tsunami Risk: None Structural Drawings Available: Yes Evaluating Firm: WRK Engineers The R.A. Long Gym Building consists of the original gymnasium building and the gym annex. The building is a one-story structure with an interstitial level at the original gymnasium. The building is constructed on level ground and is located in Longview, Washington. The 1927 building is 220 feet by 180 feet with a maximum roof height of 36 feet. The original gym building construction consists of reinforced concrete walls, reinforced masonry infill, and unreinforced masonry. The annex building consists of precast concrete panel walls. The floor system is a concrete slab-on-grade. The interstitial floor level is wood-framed. The roof system for the gym building consists of premanufactured wood trusses and wood joists with both plywood sheathing and decking. The roof system for the annex building consists of wood joists, composite decking, and precast concrete decking. The building shares the site with a parking lot and various school outbuildings. ## 1.1.1 Building Use The gym building includes a gymnasium, a mechanical space, locker rooms, and storage. The school has over 920 student occupants. #### 1.1.2 Structural System Table 1.1-1. Structural System Description of R. A. Long High School | Structural System | Description | |---------------------|--| | Structural Roof | The roof system for the gym building consists of premanufactured wood trusses and wood joists with both plywood sheathing and decking. The roof system for | | Structural Roof | the annex building consists of a mixture of insulated roof decking over wood | | | joists and beams and a precast concrete roof diaphragm. | | Structural Floor(s) | The ground level is a 3 ½-inch concrete floor slab. The interstitial floor level is | | | wood sheathing over wood joists. | | Foundations | The bearing walls are supported by continuous concrete wall footings. Concrete | | 1 oundations | piers are supported by concrete spread footings. | | | The gravity system is composed of concrete bearing walls and reinforced | | Gravity System | masonry infill at the original gym and precast concrete bearing walls at the | | | annex. | | | The lateral forces are resisted by concrete shear walls at the original building in | | Lateral System | both the longitudinal and transverse directions. The lateral forces are resisted by | | | precast concrete shear walls at the annex building in both directions. | ## 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of R. A. Long High School | Structural System | Description | |---------------------|--| | Structural Roof | No visible signs of corrosion, damage, or deterioration. | | Structural Floor(s) | No visible signs of corrosion, damage, or deterioration. | | Foundations | Unknown. | | Gravity System | No visible signs of corrosion, damage, or deterioration. | | Lateral System | No visible signs of corrosion, damage, or deterioration. | # 1.2 Seismic Evaluation Findings #### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Longview R. A. Long High School Gym | Deficiency | Description | |-------------------|--| | Wall Anchorage | Out-of-plane anchorage is not present. Tension ties, blocking, strapping, and diaphragm nailing are required | | wan Anchorage | along all concrete walls. | | | The precast concrete walls are under-reinforced and will likely need to be strengthened for in-plane and out-of- | | Reinforcing Steel | plane seismic loads. Strengthening with FRP and steel strongbacks may be appropriate. Further investigation is | | | required. | | Transfer to Shear | Inadequate connection between diaphragms and masonry shear walls. Direct, structural connections, such as | | Walls | post-installed anchors, should be installed to transfer seismic forces into the shear walls. | | Cross Ties in | There are no continuous cross ties between diaphragm chords. The addition of new cross ties between | | Flexible | diaphragm chords or the addition of strap plates to connect existing framing members together may be | | Diaphragms | appropriate to mitigate seismic risk. | | Chang | Diaphragms consist of a mixture of straight-sheathed diaphragms and composite diaphragms. Installation of | | Spans | plywood sheathing may be appropriate to mitigate seismic risk. | | | Diaphragms consist of a mixture of straight-sheathed diaphragms and composite diaphragms. Plywood | | Other Diaphragms | sheathing should be installed over composite diaphragm and may be appropriate to be installed over straight- | | | sheathed diaphragm. | #### 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Longview R. A. Long High School Gym | Unknown Item | Description | |---|---| | Load Path | Drawings provided are incomplete. This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Mezzanines | Drawings provided are incomplete. This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Liquefaction | The liquefaction potential of site soils is unknown at this time given available information. Moderate to high liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault
Rupture | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected surface fault ruptures. | | Topping Slab | This evaluation item is unknown due to incomplete original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Wood Ledgers | This evaluation item is unknown due to incomplete original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Topping Slab to
Walls or Frames | This evaluation item is unknown due to incomplete original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Deflection
Compatibility for
Rigid Diaphragms | This evaluation item is unknown due to incomplete original building construction drawings. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Minimum
Number of Wall
Anchors Per Panel | This evaluation item is unknown due to incomplete original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Precast Wall
Panels | This evaluation item is unknown due to incomplete
original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Girders | This evaluation item is unknown due to incomplete original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | #### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Longview R. A. Long High School Gym | Deficiency | Description | |-----------------------------|---| | LSS-5 Sprinkler Ceiling | Inadequate penetration clearances at panelized ceilings for fire suppression devices. Provide | | Clearance. HR-not required; | clearance around sprinkler head or provide flexible lines between horizontal piping and sprinkler | | LS-MH; PR-MH. | heads. | #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Longview R. A. Long High School Gym | Unknown Item | Description | |--|--| | LSS-1 Fire Suppression Piping. HR-not required; LS-LMH; PR-LMH. | Further investigation is required to review fire suppression anchorage and bracing. All fire suppression piping should be braced in accordance with NFPA-13. | | LSS-2 Flexible Couplings.
HR-not required; LS-LMH;
PR-LMH. | Further investigation is required to review fire suppression for flexible couplings. If non-existent, the addition of flexible couplings may be appropriate. | | LSS-4 Stair and Smoke Ducts.
HR-not required; LS-LMH;
PR-LMH. | Further investigation is required to review stair and smoke ducts for bracing and flexible connections at seismic joints. | | P-1 Unreinforced Masonry.
HR-LMH; LS-LMH; PR-
LMH. | Further investigation is required to verify bracing of URM partitions. Unreinforced masonry partition walls should be braced at a spacing of six feet or demolished. | | P-2 Heavy Partitions
Supported by Ceilings. HR-
LMH; LS-LMH; PR-LMH. | Further investigation is required to verify lateral support at the top of heavy partitions. | | P-3 Drift. HR-not required;
LS-MH; PR-MH. | Further investigation is required to verify detailing of rigid cementitious partitions for drift. | | LF-1 Independent Support.
HR-not required; LS-MH; PR-MH. | Further investigation is required to review the support system for light fixtures. All light fixtures in grid ceiling system should have seismic bracing. | | CG-8 Overhead Glazing. HR-
not required; LS-MH; PR-MH. | Further investigation is required to verify detailing of glazing panes. | | M-1 Ties. HR-not required;
LS-LMH; PR-LMH. | Further investigation is required to verify detailing of masonry veneer ties. Installation of masonry ties may be appropriate if non-existent. | | M-2 Shelf Angles. HR-not required; LS-LMH; PR-LMH. | Further investigation is required to verify the method of support of masonry veneer at each floor above grade. | | M-3 Weakened Planes. HR-
not required; LS-LMH; PR-
LMH. | Further investigation is required to verify anchorage of masonry veneer at weakened planes. | | M-4 Unreinforced Masonry
Backup. HR-LMH; LS-LMH;
PR-LMH. | Further investigation is required to verify presence of URM backup. | | M-6 Anchorage. HR-not required; LS-MH; PR-MH. | Further investigation is required to verify anchorage of masonry veneer backup. | | PCOA-4 Appendages. HR-MH; LS-MH; PR-LMH. | Further investigation is required to verify reinforcing/anchorage of appendages extending above the main structural building system. | | S-2 Stair Details. HR-not required; LS-LMH; PR-LMH. | Further investigation is required to verify stair connections. | | Unknown Item | Description | |-----------------------------|---| | ME-2 In-Line Equipment. HR- | Further investigation is required to review vertical support and lateral bracing of equipment. | | not required; LS-H; PR-H. | Further investigation is required to review vertical support and lateral oracing of equipment. | | ME-3 Tall Narrow Equipment. | Further investigation is required to review anchorage of tall narrow equipment. All tall narrow | | HR-not required; LS-H; PR- | ruriner investigation is required to review anchorage of tail narrow equipment. All tail narrow | | MH. | equipment should be anchored to the structure. | Figure 1-1. R.A. Long Gym Building - Northeast Corner Figure 1-2. R.A. Long Gym Annex Building - Northeast Corner Figure 1-3. Main Gymnasium Figure 1-4. Annex Gymnasium Figure 1-5. Main Gymnasium Attic Space Figure 1-6. Mechanical Equipment and Ducts in Attic Space Figure 1-7. Ramp Between Main Gym and Annex Building Figure 1-8. Precast Panel Walls at Annex Building Figure 1-9. Pipes at Main Gymnasium Basement Figure 1-10. Main Gymnasium at Interstitial Level ## Longview, R. A. Long High School, Gym ## 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. #### **Low Seismicity** #### **Building System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|--| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | | | | X | Drawings provided are incomplete. This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary: Sec. A.2.1.2) | X | | | | | | Mezzanines | Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | | | | х | Drawings provided are incomplete. This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | #### **Building System - Building Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---------| | Weak Story | The sum of the shear strengths of the seismic-
force-resisting system in any story in each
direction is not less than
80% of the strength in
the adjacent story above. (Tier 2: Sec. 5.4.2.1;
Commentary: Sec. A.2.2.2) | X | | | | | | Soft Story | The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Tier 2: Sec. 5.4.2.2; Commentary: Sec. A.2.2.3) | X | | | |-------------------------|--|---|--|--| | Vertical Irregularities | All vertical elements in the seismic-forceresisting system are continuous to the foundation. (Tier 2: Sec. 5.4.2.3; Commentary: Sec. A.2.2.4) | X | | | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | X | | | | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | X | | | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary: Sec. A.2.2.7) | X | | | ## Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) ## **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Moderate to high liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | X | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected | |-----------------------|---|--|---|--| | | | | | surface fault ruptures. | ## High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) #### **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|---------| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | X | | | | | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | | | X | | | ## 17-28 Collapse Prevention Structural Checklist for Building Types PC1 and PC1a Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. #### Low Seismicity #### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---| | Wall Anchorage | Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Tier 2: Sec. 5.7.1.1; Commentary: Sec. A.5.1.1) | | X | | | Out-of-plane anchorage is
not present. Tension ties,
blocking, strapping, and
diaphragm nailing are
required along all concrete
walls. | # Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seimicity) #### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |----------------------------|--|---|----|-----|---|--| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | X | | | | | | Wall Shear Stress
Check | The shear stress in the precast panels, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the greater of 100 lb/in.2 (0.69 MPa) or 2√f c. (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.3.1) | X | | | | | | Reinforcing Steel | The ratio of reinforcing steel area to gross concrete area is not less than 0.0012 in the vertical direction and 0.0020 in the horizontal direction. (Tier 2: Sec. 5.5.3.1.3; Commentary: Sec. A.3.2.3.2) | | X | | | The precast concrete walls are under-reinforced and will likely need to be strengthened for in-plane and out-of-plane seismic loads. Strengthening with FRP and steel strongbacks may be appropriate. Further investigation is required. | | Wall Thickness | Thicknesses of bearing walls are not less than 1/40 the unsupported height or length, whichever is shorter, nor less than 4 in. (101 mm). (Tier 2: Sec. 5.5.3.1.2; Commentary: Sec. A.3.2.3.5) | X | | | | | #### **Diaphragms** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|-------------------------------| | | | | | | | This evaluation item is | | | | | | | | unknown due to incomplete | | | | | | | | original building | | | Precast concrete diaphragm elements are | | | | | construction drawings and | | | interconnected by a continuous reinforced | | | | | could not be visually | | Topping Slab | concrete topping slab with a minimum thickness | | | | X | verified. This item requires | | | of 2 in. (51 mm). (Tier 2: Sec. 5.6.4; | | | | | further investigation to make | | | Commentary: Sec. A.4.5.1) | | | | | a final determination on its | | | | | | | | compliance and to develop a | | | | | | | | mitigation recommendation, | | | | | | | | if necessary. | #### Connections | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |------------------------------------
--|---|----|-----|---|--| | Wood Ledgers | The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Tier 2: Sec. 5.7.1.3; Commentary: Sec. A.5.1.2) | | | | X | This evaluation item is unknown due to incomplete original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Transfer to Shear Walls | Diaphragms are connected for transfer of seismic forces to the shear walls. (Tier 2: Sec. 5.7.2; Commentary: Sec. A.5.2.1) | | X | | | Inadequate connection
between diaphragms and
masonry shear walls. Direct,
structural connections, such
as post-installed anchors,
should be installed to
transfer seismic forces into
the shear walls. | | Topping Slab to Walls
or Frames | Reinforced concrete topping slabs that interconnect the precast concrete diaphragm elements are doweled for transfer of forces into the shear wall or frame elements. (Tier 2: Sec. 5.7.2; Commentary: Sec. A.5.2.3) | | | | X | This evaluation item is unknown due to incomplete original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Girder-Column
Conncection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | X | | | | | ## High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) #### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | Deflection
Compatibility for Rigid
Diaphragms | Secondary components have the shear capacity to develop the flexural strength of the components. (Tier 2: Sec. 5.5.2.5.2; Commentary: Sec. A.3.1.6.2) | | | | X | This evaluation item is unknown due to incomplete original building construction drawings. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Wall Openings | The total width of openings along any perimeter wall line constitutes less than 75% of the length of any perimeter wall when the wall piers have aspect ratios of less than 2-to-1. (Tier 2: Sec. 5.5.3.3.1; Commentary: Sec. A.3.2.3.3) | X | | | | | #### Diaphragms | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | Cross Ties in Flexible
Diaphragms | There are continuous cross ties between diaphragm chords. (Tier 2: Sec. 5.6.1.2; Commentary: Sec. A.4.1.2) | | X | | | There are no continuous cross ties between diaphragm chords. The addition of new cross ties between diaphragm chords or the addition of strap plates to connect existing framing members together may be appropriate to mitigate seismic risk. | | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.1) | X | | | | | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | | X | | | Diaphragms consist of a mixture of straight-sheathed diaphragms and composite diaphragms. Installation of plywood sheathing may be appropriate to mitigate seismic risk. | | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4 to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | | | X | | | | Other Diaphragms Diaphragms do not consist of a system than wood, metal deck, concrete, or his bracing. (Tier 2: Sec. 5.6.5; Commen A.4.7.1) | izontal X diaphragms. Plywood | |---|-------------------------------| |---|-------------------------------| #### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|--| | Minimum Number of
Wall Anchors Per
Panel | There are at least two anchors connecting each precast wall panel to the diaphragm elements. (Tier 2: Sec. 5.7.1.4; Commentary: Sec. A.5.1.3) | | | | X | This evaluation item is unknown due to incomplete original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Precast Wall Panels | Precast wall panels are connected to the foundation. (Tier 2: Sec. 5.7.3.4; Commentary: Sec. A.5.3.6) | | | | X | This evaluation item is unknown due to incomplete original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Uplift at Pile Caps | Pile caps have top reinforcement, and piles are anchored to the pile caps. (Tier 2: Sec. 5.7.3.5; Commentary: Sec. A.5.3.8) | | | X | | | | Girders | Girders supported by walls or pilasters have at least two ties securing the anchor bolts unless provided with independent stiff wall anchors with strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Tier 2: Sec. 5.7.4.2; Commentary: Sec. A.5.4.2) | | | | X | This evaluation item is unknown due to incomplete original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | ## Longview, R. A. Long High School, Gym ## 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High #### **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|--| | LSS-1 Fire Suppression
Piping. HR-not required;
LS-LMH; PR-LMH. | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1) | | | | X | Further investigation is required to review fire suppression anchorage and bracing. All fire suppression piping should be braced in accordance with NFPA-13. | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | | X | Further investigation is required to review fire suppression for flexible couplings. If non-existent, the addition of flexible couplings may be appropriate. | | LSS-3
Emergency
Power. HR-not required;
LS-LMH; PR-LMH. | Equipment used to power or control Life Safety systems is anchored or braced. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | | X | | None observed | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | | X | Further investigation is required to review stair and smoke ducts for bracing and flexible connections at seismic joints. | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | X | | | Inadequate penetration clearances at panelized ceilings for fire suppression devices. Provide clearance around sprinkler head or provide flexible lines between horizontal piping and sprinkler heads. | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | HM-1 Hazardous
Material Equipment. HR-
LMH; LS-LMH; PR-
LMH. | Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.2) | | | X | | | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | | X | | | | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | | | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | | | X | | | | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | | | X | | | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | | X | | | #### **Partitions** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | P-1 Unreinforced
Masonry. HR-LMH; LS-
LMH; PR-LMH. | Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | | | X | Further investigation is required to verify bracing of URM partitions. Unreinforced masonry partition walls should be braced at a spacing of six feet or demolished. | | P-2 Heavy Partitions
Supported by Ceilings.
HR-LMH; LS-LMH; PR-
LMH. | The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | | X | Further investigation is required to verify lateral support at the top of heavy partitions. | | P-3 Drift. HR-not
required; LS-MH; PR-
MH. | Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.2) | | | X | Further investigation is required to verify detailing of rigid cementitious partitions for drift. | |---|--|--|---|---|---| | P-4 Light Partitions
Supported by Ceilings.
HR-not required; LS-not
required; PR-MH. | The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-5 Structural Separations. HR-not required; LS-not required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-6 Tops. HR-not
required; LS-not
required; PR-MH. | The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### Ceilings | Cennigs | | | | | | | |---|---|---|----|-----|---|---| | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | Х | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |---|---|--|---|---| | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure
angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-7 Seismic Joints. HR-
not required; LS-not
required; PR-H. | Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2,500 ft2 (232.3 m2) and has a ratio of long-to-short dimension no more than 4-to-1. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.7) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---| | LF-1 Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec. 13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | | X | Further investigation is required to review the support system for light fixtures. All light fixtures in grid ceiling system should have seismic bracing. | | LF-2 Pendant Supports.
HR-not required; LS-not
required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | Х | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | LF-3 Lens Covers. HR-
not required; LS-not
required; PR-H. | Lens covers on light fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | | | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | | | X | | | | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | | | X | | | | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | | | X | | | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | | | X | | | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | | X | | | |--|--|--|---|---|---| | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | | X | | | | CG-8 Overhead Glazing.
HR-not required; LS-
MH; PR-MH. | Glazing panes of any size in curtain walls and individual interior or exterior panes more than 16 ft2 (1.5 m2) in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Tier 2: Sec. 13.6.1.5; Commentary: Sec. A.7.4.8) | | | X | Further investigation is required to verify detailing of glazing panes. | ## **Masonry Veneer** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|--| | M-1 Ties. HR-not required; LS-LMH; PR-LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | | X | Further investigation is required to verify detailing of masonry veneer ties. Installation of masonry ties may be appropriate if non-existent. | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | | X | Further investigation is required to verify the method of support of masonry veneer at each floor above grade. | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | | X | Further investigation is required to verify anchorage of masonry veneer at weakened planes. | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | | X | Further investigation is required to verify presence of URM backup. | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | | | M-6 Anchorage. HR-not
required; LS-MH; PR-
MH. | For veneer with concrete block or
masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | | X | Further investigation is required to verify anchorage of masonry veneer backup. | | M-7 Weep Holes. HR-not | In veneer anchored to stud walls, the veneer has | | | Non-applicable due to | |--|--|--|---|---| | required; LS-not | functioning weep holes and base flashing. (Tier | | X | ASCE 41 Performance | | required; PR-MH. | 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | Level: "Life Safety (LS)" | | M-8 Openings. HR-not required; LS-not required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|--| | PCOA-1 URM Parapets
or Cornices. HR-LMH;
LS-LMH; PR-LMH. | Laterally unsupported unreinforced masonry parapets or cornices have height-tothickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.1) | | | X | | | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | | | X | | | | PCOA-3 Concrete
Parapets. HR-H; LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | | | X | | | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | | | | X | Further investigation is required to verify reinforcing/anchorage of appendages extending above the main structural building system. | #### **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | | X | | | | MC 2 Anchorago IID | Masonry chimneys are anchored at each floor | | | | | |---|---|--|---|--|--| | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | X | | | #### **Stairs** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | S-1 Stair Enclosures.
HR-not required; LS-
LMH; PR-LMH. | Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out of plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Tier 2: Sec. 13.6.2, 13.6.8; Commentary: Sec. A.7.10.1) | | | X | | | | S-2 Stair Details. HR-not
required; LS-LMH; PR-
LMH. | The connection between the stairs and the structure does not rely on post-installed anchors in concrete or masonry, and the stair details are capable of accommodating the drift calculated using the Quick Check procedure of Section 4.4.3.1 for moment-frame structures or 0.5 in. for all other structures without including any lateral stiffness contribution from the stairs. (Tier 2: Sec. 13.6.8; Commentary: Sec. A.7.10.2) | | | | X | Further investigation is required to verify stair connections. | ## **Contents and Furnishings** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) | | | X | | | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | | X | | | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | X | | | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm) high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec. A.7.11.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |--|---|--|---|---| | CF-6 Suspended
Contents. HR-not
required; LS-not
required; PR-H. | Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|--| | ME-1
Fall-Prone
Equipment. HR-not
required; LS-H; PR-H. | Equipment weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level, and which is not in-line equipment, is braced. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.4) | | | X | | | | ME-2 In-Line
Equipment. HR-not
required; LS-H; PR-H. | Equipment installed in line with a duct or piping system, with an operating weight more than 75 lb (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | | | | X | Further investigation is required to review vertical support and lateral bracing of equipment. | | ME-3 Tall Narrow
Equipment. HR-not
required; LS-H; PR-MH. | Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.6) | | | | X | Further investigation is required to review anchorage of tall narrow equipment. All tall narrow equipment should be anchored to the structure. | | | Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Tier 2: Sec. 13.6.9; Commentary: Sec. A.7.12.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-5 Suspended
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.9) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-7 Heavy Equipment.
HR-not required; LS-not
required; PR-H. | Floor supported or platform-supported equipment weighing more than 400 lb (181.4 kg) is anchored to the structure. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-8 Electrical
Equipment. HR-not
required; LS-not
required; PR-H. | Electrical equipment is laterally braced to the structure. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.11) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Conduit greater than 2.5 in. (64 mm) trade size | | | | | |-------------------|---|--|---|--|--| | ME-9 Conduit | that is attached to panels, cabinets, or other | | | | Non-applicable due to | | Couplings. HR-not | equipment and is subject to relative seismic | | X | | ASCE 41 Performance
Level: "Life Safety (LS)" | | required; LS-not | displacement has flexible couplings or | | Λ | | | | required; PR-H. | connections. (Tier 2: Sec. 13.7.8; Commentary: | | | | | | | Sec. A.7.12.12) | | | | | ## Piping | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | PP-1 Flexible Couplings.
HR-not required; LS-not required; PR-H. | Fluid and gas piping has flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-2 Fluid and Gas
Piping. HR-not required;
LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-3 C-Clamps. HR-not
required; LS-not
required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Elevators** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |------------------------|---|---|----|-----|---|---------------------------| | EL-1 Retainer Guards. | Sheaves and drums have cable retainer guards. | | | | | Non-applicable due to | | HR-not required; LS-H; | (Tier 2: Sec. 13.7.11; Commentary: Sec. | | | X | | ASCE 41 Performance | | PR-H. | A.7.16.1) | | | | | Level: "Life Safety (LS)" | | | | | | <u> </u> | |-------------------------|---|--|---|---------------------------| | | A retainer plate is present at the top and bottom | | | Non-applicable due to | | not required; LS-H; PR- | of both car and counterweight. (Tier 2: Sec. | | X | ASCE 41 Performance | | H. | 13.7.11; Commentary: Sec. A.7.16.2) | | | Level: "Life Safety (LS)" | | EL-3 Elevator | Equipment, piping, and other components that | | | | | Equipment. HR-not | are part of the elevator system are anchored. | | X | No elevator | | required; LS-not | (Tier 2: Sec. 13.7.11; Commentary: Sec. | | 1 | 140 cicvator | | required; PR-H. | A.7.16.3) | | | | | | Elevators capable of operating at speeds of 150 | | | | | | ft/min or faster are equipped with seismic | | | | | EL-4 Seismic Switch. | switches that meet the requirements of ASME | | | | | HR-not required; LS-not | A17.1 or have trigger levels set to 20% of the | | X | No elevator | | required; PR-H. | acceleration of gravity at the base of the | | X | No elevator | | required, 1 K-11. | structure and 50% of the acceleration of gravity | | | | | | in other locations. (Tier 2: Sec. 13.7.11; | | | | | | Commentary: Sec. A.7.16.4) | | | | | EL-5 Shaft Walls. HR- | Elevator shaft walls are anchored and reinforced | | | | | | to prevent toppling into the shaft during strong | | X | No elevator | | not required; LS-not | shaking. (Tier 2: Sec. 13.7.11; Commentary: | | Λ | No elevator | | required; PR-H. | Sec. A.7.16.5) | | | | | EL-6 Counterweight | All counterweight rails and divider beams are | | | | | Rails. HR-not required; | sized in accordance with ASME A17.1. (Tier 2: | | X | No elevator | | LS-not required; PR-H. | Sec. 13.7.11; Commentary: Sec. A.7.16.6) | | | | | EL-7 Brackets. HR-not | The brackets that tie the car rails and the | | | | | required; LS-not | counterweight rail to the structure are sized in | | X | No elevator | | required; PR-H. | accordance with ASME A17.1. (Tier 2: Sec. | | Λ | No elevator | | required, FK-II. | 13.7.11; Commentary: Sec. A.7.16.7) | | | | | EL-8 Spreader Bracket. | Spreader brackets are not used to resist seismic | | | | | HR-not required; LS-not | forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. | | X | No elevator | | required; PR-H. | A.7.16.8) | | | | | EL-9 Go-Slow Elevators. | The building has a go-slow elevator system. | | | | | HR-not required; LS-not | (Tier 2: Sec. 13.7.11; Commentary: Sec. | | X | No elevator | | required; PR-H. | A.7.16.9) | | | | ## 1. Longview, R. A. Long High School, Main Building #### 1.1 Building Description Building Name: Main Building Facility Name: R. A. Long High School District Name:
Longview ICOS Latitude: 46.141 ICOS Longitude: -122.955 **ICOS** County/District ID: 8122 ICOS Building ID: 14045 ASCE 41 Bldg Type: URMa Enrollment: 928 Gross Sq. Ft. : 103,568 Year Built: 1927 Number of Stories: 2 S_{XS BSE-2E}: 0.909 S_{X1 BSE-2E:} 0.872 ASCE 41 Level of Seismicity: Site Class: E V_{S30}(m/s): 166 Liquefaction Moderate to High Tsunami Risk: None Structural Drawings Available: Yes Evaluating Firm: WRK Engineers The R.A. Long High School main building is a two-story unreinforced masonry structure. The 1927 building is constructed on level ground and is located in Longview, Washington. The building is rectangular in plan, approximately 360 feet by 220 feet, with a maximum roof height of around 45 feet. The building's exterior walls are constructed out of unreinforced brick masonry. The interior walls are constructed out of either unreinforced brick masonry or 2x wood studs. The roof system is a flexible diaphragm composed of sheathing over wood beams and joists. The second floor is a concrete rib slab spanning between concrete beams. The main floor is either a concrete slab-on-grade or a concrete slab over concrete beams and columns above the below-grade tunnel. There is a full building height auditorium in the center of the building with a concrete balcony. There is an unreinforced brick clock tower above the main entrance. The one-story boiler room, cafeteria, and kitchen are at the west side of the building. The cafeteria has multiple exterior windows that have been infilled with brick masonry. The cafeteria roof is supported by timber trusses. The building is | attached to the shop building on the north end and the science wing on the south end. The building shares the site with the shop building, the science wing, the gymnasium, and various other out buildings. | |--| ### 1.1.1 Building Use The R.A. Long High School main building consists of classrooms, an auditorium, a library, a cafeteria, a kitchen, and administrative offices. R.A. Long High School has over 920 student occupants. # 1.1.2 Structural System Table 1.1-1. Structural System Description of R. A. Long High School | Structural System | Description | |---------------------|--| | Structural Roof | The roof system is composed of wood sheathing over either wood joists or timber trusses. | | Structural Floor(s) | The main floor and the second level floor are one-way concrete slabs supported by concrete joists and beams. Portions of the main floor are a concrete slab-on-grade. | | Foundations | The unreinforced masonry walls are supported by continuous wall footings. The main floor slab is supported by spread footings. | | Gravity System | The roof diaphragm is supported by the wood joists and trusses, which span between unreinforced masonry bearing walls. The floor slabs are supported by concrete joists and beams that are supported by the unreinforced masonry walls and concrete columns. | | Lateral System | The lateral forces are resisted by unreinforced brick masonry walls in the longitudinal and transverse directions. | # 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of R. A. Long High School | Structural System | Description | |---------------------|--| | Structural Roof | No visible signs of corrosion, damage, or deterioration. | | Structural Floor(s) | No visible signs of corrosion, damage, or deterioration. | | Foundations | Unknown. | | Gravity System | Some spalling of concrete observed at concrete columns. Separation at mortar joints observed in places at brick walls. | | Lateral System | Separation at mortar joints observed in places at brick walls. | # **1.2 Seismic Evaluation Findings** #### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Longview R. A. Long High School Main Building | Deficiency | Description | |----------------------------|---| | Load Path | Unreinforced masonry clock tower and chimney flue at boiler room present structural hazard during heavy shaking. The addition of a supplemental framing system on the interior of the clock tower may be appropriate to reduce structural hazards. Further investigation is required. | | Vertical
Irregularities | Vertical elements resisting shear wall overturning are discontinuous in locations. Lateral system strengthening or the addition of new shear walls may be appropriate to mitigate seismic risk. | | Shear Stress
Check | Pseudo shear stress is greater than 30 psi. The building likely requires URM shear wall strengthening, such as adding FRP or adding new shear walls to reduce the demand on the URM walls. Further investigation is required. | | Wall Anchorage | Out-of-plane wall anchorage not present. Tension ties, blocking, strapping, and diaphragm nailing are required along URM walls. | | Cross Ties | The building does not have continuous cross ties between diaphragm chords. The addition of new cross ties between diaphragm chords or the addition of strap plates to connect existing framing members together may be appropriate to mitigate seismic risk. | #### 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Longview R. A. Long High School Main Building | Unknown Item | Description | |---|---| | Mezzanines | Unknown if interior mezzanine level is adequately braced. Further investigation is required to make a final determination on this item's compliance and to develop a mitigation recommendation, if necessary. | | Liquefaction | The liquefaction potential of site soils is unknown at this time given available information. Moderate to high liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault
Rupture | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected surface fault ruptures. | | Wood Ledgers | This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Transfer to Shear
Walls | This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Masonry Layup | This evaluation item is unknown and cannot be visually verified. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Straight Sheathing | Flexible diaphragm sheathing is unknown and not apparent on the construction drawings. Based on the age of the building, diaphragm strengthening, such as installing plywood sheathing, may be appropriate to mitigate seismic risk. Further investigation is required. | | Spans | Flexible diaphragm sheathing is unknown and not apparent on the construction drawings. Based on the age of the building, diaphragm strengthening, such as installing plywood sheathing, may be appropriate to mitigate seismic risk. Further investigation is required. | | Diagonally
Sheathed and
Unblocked
Diaphragms | Flexible diaphragm sheathing is unknown and not apparent on the construction drawings. Based on the age of the building, diaphragm strengthening through the addition of new plywood sheathing and blocking may be appropriate to mitigate seismic risk. Further investigation is required. | | Other Diaphragms | Flexible diaphragm sheathing is unknown and not apparent on the construction drawings. To determine the sheathing type, installation of plywood sheathing may be required. Further investigation is required. | | Stiffness of Wall
Anchors | This
evaluation item is unknown and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | #### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Longview R. A. Long High School Main Building | Deficiency | Description | |---|--| | LSS-1 Fire Suppression
Piping. HR-not required; LS-
LMH; PR-LMH. | Fire suppression not anchored and braced. All fire suppression piping should be braced in accordance with NFPA-13. | | LSS-5 Sprinkler Ceiling
Clearance. HR-not required;
LS-MH; PR-MH. | Inadequate penetration clearances at panelized ceilings for fire suppression devices. Provide clearance around sprinkler head or provide flexible lines between horizontal piping and sprinkler heads. | | HM-3 Hazardous Material
Distribution. HR-MH; LS-
MH; PR-MH. | Piping/ductwork not adequately protected from damage that could potentially allow release of hazardous material. All hazardous material piping/ductwork should be braced. | | P-1 Unreinforced Masonry.
HR-LMH; LS-LMH; PR-
LMH. | Inadequate bracing for URM partitions. Unreinforced masonry partition walls should be braced at a spacing of six feet or demolished. | | MC-1 URM Chimneys. HR-LMH; LS-LMH; PR-LMH. | URM chimney extends above the roof surface more than two times the least dimension of the chimney. Demolition of the URM chimney may be appropriate. | #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Longview R. A. Long High School Main Building | Unknown Item | Description | |--|--| | LSS-2 Flexible Couplings.
HR-not required; LS-LMH;
PR-LMH. | Further investigation is required to review fire suppression for flexible couplings. If non-existent, the addition of flexible couplings may be appropriate. | | HM-4 Shutoff Valves. HR-
MH; LS-MH; PR-MH. | Further investigation is required to locate shutoff valves or spill/leak protection for hazardous material piping. If non-existent, the addition of shutoff valves may be appropriate. | | HM-5 Flexible Couplings.
HR-LMH; LS-LMH; PR-LMH. | Further investigation is required to locate flexible couplings on hazardous material ductwork/piping. Item is likely non-compliant based on the age of the building. If non-existent, the addition of flexible couplings may be appropriate. | | P-2 Heavy Partitions
Supported by Ceilings. HR-
LMH; LS-LMH; PR-LMH. | Further investigation is required to verify lateral support at the top of heavy partitions. | | P-3 Drift. HR-not required;
LS-MH; PR-MH. | Further investigation is required to verify detailing of rigid cementitious partitions for drift. | | C-1 Suspended Lath and
Plaster. HR-H; LS-MH; PR-
LMH. | Further investigation is required to review suspended ceiling attachments. | | C-2 Suspended Gypsum
Board. HR-not required; LS-
MH; PR-LMH. | Further investigation is required to review suspended ceiling attachments. | | LF-1 Independent Support.
HR-not required; LS-MH; PR-MH. | Further investigation is required to review the support system for light fixtures. All light fixtures in grid ceiling system should have seismic bracing. | | CG-8 Overhead Glazing. HR-not required; LS-MH; PR-MH. | Further investigation is required to verify detailing of glazing panes. | | PCOA-1 URM Parapets or
Cornices. HR-LMH; LS-
LMH; PR-LMH. | Further investigation is required to verify height-to-thickness ratios of URM parapets/cornices. The addition of strongbacks and lateral bracing may be appropriate. | | PCOA-4 Appendages. HR-MH; LS-MH; PR-LMH. | Further investigation is required to verify reinforcing/anchorage of appendages extending above the main structural building system. | | MC-2 Anchorage. HR-LMH;
LS-LMH; PR-LMH. | Further investigation is required to verify masonry chimney anchorage. | | S-1 Stair Enclosures. HR-not required; LS-LMH; PR-LMH. | Further investigation is required to verify stair wall out-of-plane anchorage. | | S-2 Stair Details. HR-not required; LS-LMH; PR-LMH. | Further investigation is required to verify stair connections. | | CF-2 Tall Narrow Contents.
HR-not required; LS-H; PR-MH. | Further investigation is required to review anchorage of tall narrow contents. All tall narrow contents should be anchored to the structure. | | Unknown Item | Description | |------------------------------|--| | ME-3 Tall Narrow Equipment. | Further investigation is required to review anchorage of tall narrow equipment. All tall narrow | | HR-not required: LS-H: PR- | equipment should be anchored to the structure. | | MH. | equipment should be anchored to the structure. | | EL-1 Retainer Guards. HR-not | Further investigation is required to verify elevator sheaves and drums have cable retainer guards. | | required; LS-H; PR-H. | ruther investigation is required to verify elevator sheaves and drums have cable retainer guards. | | EL-2 Retainer Plate. HR-not | | | required; LS-H; PR-H. | Further investigation is required to verify proper installation of retainer plates. | # Photos: Figure 1-1. R.A. Long High School - East Exterior Figure 1-2. R.A. Long High School - South Exterior Figure 1-3. R.A. Long High School - West Exterior at Boiler Room Figure 1-4. Timber Trusses in Cafeteria Figure 1-5. Typical Classroom with Unknown Light Fixture Bracing Figure 1-6. Library Figure 1-7. Auditorium Figure 1-8. Skylights in Upper Level East Hallway with Unknown Detailing Could Present Falling Hazard Figure 1-9. Opening Showing Unreinforced Multiple-Wythe Brick Wall Figure 1-10. Boiler Room with Unbraced Nonstructural Components # Longview, R. A. Long High School, Main Building # 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ### **Low Seismicity** #### **Building System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|---| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | | X | | | Unreinforced masonry clock tower and chimney flue at boiler room present structural hazard during heavy shaking. The addition of a supplemental framing system on the interior of the clock tower may be appropriate to reduce structural hazards. Further investigation is required. | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary:
Sec. A.2.1.2) | X | | | | | | Mezzanines | Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | | | | X | Unknown if interior mezzanine level is adequately braced. Further investigation is required to make a final determination on this item's compliance and to develop a mitigation recommendation, if necessary. | ### **Building System - Building Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---------| | | The sum of the shear strengths of the seismic-
force-resisting system in any story in each
direction is not less than 80% of the strength in
the adjacent story above. (Tier 2: Sec. 5.4.2.1;
Commentary: Sec. A.2.2.2) | X | | | | | | Soft Story | The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Tier 2: Sec. 5.4.2.2; Commentary: Sec. A.2.2.3) | X | | | | |-------------------------|--|---|---|--|--| | Vertical Irregularities | All vertical elements in the seismic-forceresisting system are continuous to the foundation. (Tier 2: Sec. 5.4.2.3; Commentary: Sec. A.2.2.4) | | X | | Vertical elements resisting shear wall overturning are discontinuous in locations. Lateral system strengthening or the addition of new shear walls may be appropriate to mitigate seismic risk. | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | X | | | | | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | X | | | | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary: Sec. A.2.2.7) | X | | | | # Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) # **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Moderate to high liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | |-----------------------|--|--|---|--| | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | X | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected surface fault ruptures. | # High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ### **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|---------| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | X | | | | | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | | | X | | | # 17-36 Collapse Prevention Structural Checklist for Building Types URM and URMa Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. # Low and Moderate Seismicity #### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|---| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | X | | | | | | Shear Stress Check | The shear stress in the unreinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than 30 lb/in.2 (0.21 MPa) for clay units and 70 lb/in.2 (0.48 MPa) for concrete units. (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.5.1) | | X | | | Pseudo shear stress is greater than 30 psi. The building likely requires URM shear wall strengthening, such as adding FRP or adding new shear walls to reduce the demand on the URM walls. Further investigation is required. | #### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|--| | Wall Anchorage | Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Tier 2: Sec. 5.7.1.1; Commentary: Sec. A.5.1.1) | | X | | | Out-of-plane wall anchorage
not present. Tension ties,
blocking, strapping, and
diaphragm nailing are
required along URM walls. | | Wood Ledgers | The connection between
the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Tier 2: Sec. 5.7.1.3; Commentary: Sec. A.5.1.2) | | | | X | This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Transfer to Shear Walls | Diaphragms are connected for transfer of seismic forces to the shear walls. (Tier 2: Sec. 5.7.2; Commentary: Sec. A.5.2.1) | | | X | This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | |-----------------------------|---|---|--|---|--| | Girder-Column
Connection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | X | | | | # High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---| | Proportions | The height-to-thickness ratio of the shear walls at each story is less than the following: Top story of multi-story building – 9; First story of multi-story building – 15; All other conditions – 13. (Tier 2: Sec. 5.5.3.1.2; Commentary: Sec. A.3.2.5.2) | X | | | | | | Masonry Layup | Filled collar joints of multi-wythe masonry walls have negligible voids. (Tier 2: Sec. 5.5.3.4.1; Commentary: Sec. A.3.2.5.3) | | | | X | This evaluation item is unknown and cannot be visually verified. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | ### **Diaphragms (Stiff or Flexible)** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |----------------------------|--|---|----|-----|---|---------| | Openings at Shear
Walls | Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.4) | | | X | | | | 1 0 | Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.6) | | | X | | | # Flexible Diaphragms | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |------------------------|----------------------|---|----|-----|---|---------| | Cross Ties | There are continuous cross ties between diaphragm chords. (Tier 2: Sec. 5.6.1.2; Commentary: Sec. A.4.1.2) | х | | The building does not have continuous cross ties between diaphragm chords. The addition of new cross ties between diaphragm chords or the addition of strap plates to connect existing framing members together may be appropriate to mitigate seismic risk. | |--|---|---|---|---| | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.1) | | X | Flexible diaphragm sheathing is unknown and not apparent on the construction drawings. Based on the age of the building, diaphragm strengthening, such as installing plywood sheathing, may be appropriate to mitigate seismic risk. Further investigation is required. | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | | X | Flexible diaphragm sheathing is unknown and not apparent on the construction drawings. Based on the age of the building, diaphragm strengthening, such as installing plywood sheathing, may be appropriate to mitigate seismic risk. Further investigation is required. | | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4 to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | | X | Flexible diaphragm sheathing is unknown and not apparent on the construction drawings. Based on the age of the building, diaphragm strengthening through the addition of new plywood sheathing and blocking may be appropriate to mitigate seismic risk. Further investigation is required. | | | | | | Flexible diaphragm | |------------------|--|--|---|-------------------------------| | | | | | sheathing is unknown and | | | The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Tier 2: Sec. 5.6.5; Commentary: Sec. A.4.7.1) | | | not apparent on the | | | | | | construction drawings. To | | Other Diaphragms | | | X | determine the sheathing | | | | | | type, installation of plywood | | | | | | sheathing may be required. | | | | | | Further investigation is | | | | | | required. | ### Connections | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|--|---|----|-----|---|--| | Stiffness of Wall
Anchors | Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. before engagement of the anchors. (Tier 2: Sec. 5.7.1.2; Commentary: Sec. A.5.1.4) | | | | X | This evaluation item is unknown and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Beam, Girder, and
Truss Supports | Beams, girders, and trusses supported by unreinforced masonry walls or pilasters have independent secondary columns for support of vertical loads. (Tier 2: Sec. 5.7.4.4; Commentary: Sec. A.5.4.5) | X | | | | | # Longview, R. A. Long High School, Main Building # 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High #### **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|--| | LSS-1 Fire Suppression
Piping. HR-not required;
LS-LMH; PR-LMH. | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1) | | X | | | Fire suppression not anchored and braced. All fire suppression piping should be braced in accordance with NFPA-13. | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | | X | Further investigation is required to review fire suppression for flexible couplings. If non-existent, the addition of flexible couplings may be appropriate. | | LSS-3 Emergency
Power. HR-not required;
LS-LMH; PR-LMH. | Equipment used to power or control Life Safety systems is anchored or braced.
(Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | | X | | No emergency generator | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | X | | | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | X | | | Inadequate penetration clearances at panelized ceilings for fire suppression devices. Provide clearance around sprinkler head or provide flexible lines between horizontal piping and sprinkler heads. | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------|--|---|----|-----|---|---------| | HM-1 Hazardous | Equipment mounted on vibration isolators and | | | | | | | Material Equipment. HR- | containing hazardous material is equipped with | | | v | | | | LMH; LS-LMH; PR- | restraints or snubbers. (Tier 2: Sec. 13.7.1; | | | Λ | | | | LMH. | Commentary: Sec. A.7.12.2) | | | | | | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | X | | | |--|--|---|---|---|--| | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | X | | | Piping/ductwork not adequately protected from damage that could potentially allow release of hazardous material. All hazardous material piping/ductwork should be braced. | | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | | | X | Further investigation is required to locate shutoff valves or spill/leak protection for hazardous material piping. If non-existent, the addition of shutoff valves may be appropriate. | | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | | | X | Further investigation is required to locate flexible couplings on hazardous material ductwork/piping. Item is likely noncompliant based on the age of the building. If nonexistent, the addition of flexible couplings may be appropriate. | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | X | | | # **Partitions** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | P-1 Unreinforced
Masonry. HR-LMH; LS-
LMH; PR-LMH. | Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | X | | | Inadequate bracing for URM partitions. Unreinforced masonry partition walls should be braced at a spacing of six feet or demolished. | | P-2 Heavy Partitions
Supported by Ceilings.
HR-LMH; LS-LMH; PR-
LMH. | The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | Further investigation is required to verify lateral support at the top of heavy partitions. | |---|--|--|---|---|---| | P-3 Drift. HR-not
required; LS-MH; PR-
MH. | Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.2) | | | X | Further investigation is required to verify detailing of rigid cementitious partitions for drift. | | P-4 Light Partitions
Supported by Ceilings.
HR-not required; LS-not
required; PR-MH. | The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-5 Structural Separations. HR-not required; LS-not required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-6 Tops. HR-not
required; LS-not
required; PR-MH. | The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # Ceilings | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | | X | Further investigation is required to review suspended ceiling attachments. | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | | X | Further investigation is required to review suspended ceiling attachments. | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |---
--|---|---| | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-7 Seismic Joints. HR-
not required; LS-not
required; PR-H. | Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2,500 ft2 (232.3 m2) and has a ratio of long-to-short dimension no more than 4-to-1. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.7) | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---| | LF-1 Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec. 13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | | X | Further investigation is required to review the support system for light fixtures. All light fixtures in grid ceiling system should have seismic bracing. | | LF-2 Pendant Supports. HR-not required; LS-not required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | LF-3 Lens Covers. HR-
not required; LS-not | Lens covers on light fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; | | | X | | Non-applicable due to ASCE 41 Performance | | required; PR-H. | Commentary: Sec. A.7.3.4) | | | | | Level: "Life Safety (LS)" | # **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | | | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | | | X | | | | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | | | X | | | | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | | | X | | | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | | | X | | | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | | X | | | |--|--|--|---|---|---| | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | | X | | | | CG-8 Overhead Glazing.
HR-not required; LS-
MH; PR-MH. | Glazing panes of any size in curtain walls and individual interior or exterior panes more than 16 ft2 (1.5 m2) in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Tier 2: Sec. 13.6.1.5; Commentary: Sec. A.7.4.8) | | | X | Further investigation is required to verify detailing of glazing panes. | #### **Masonry Veneer** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|-------------------| | M-1 Ties. HR-not
required; LS-LMH; PR-
LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | X | | No masonry veneer | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | X | | No masonry veneer | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | X | | No masonry veneer | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec.
13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | X | | No masonry veneer | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | No masonry veneer | | M-6 Anchorage. HR-not required; LS-MH; PR-MH. | For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | X | | No masonry veneer | | M-7 Weep Holes. HR-not | In veneer anchored to stud walls, the veneer has | | | | |--|--|--|---|-------------------| | required; LS-not | functioning weep holes and base flashing. (Tier | | X | No masonry veneer | | required; PR-MH. | 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | | | M-8 Openings. HR-not required; LS-not required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | X | No masonry veneer | # Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|--| | PCOA-1 URM Parapets
or Cornices. HR-LMH;
LS-LMH; PR-LMH. | Laterally unsupported unreinforced masonry parapets or cornices have height-tothickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.1) | | | | X | Further investigation is required to verify height-to-thickness ratios of URM parapets/cornices. The addition of strongbacks and lateral bracing may be appropriate. | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | | | X | | | | PCOA-3 Concrete
Parapets. HR-H; LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | | | X | | | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | | | | X | Further investigation is required to verify reinforcing/anchorage of appendages extending above the main structural building system. | # **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | X | | | URM chimney extends above the roof surface more than two times the least dimension of the chimney. Demolition of the URM chimney may be appropriate. | | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | Masonry chimneys are anchored at each floor level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | | | X | Further investigation is required to verify masonry chimney anchorage. | |---|---|--|--|--|---|--| |---|---|--|--|--|---|--| #### **Stairs** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | S-1 Stair Enclosures.
HR-not required; LS-
LMH; PR-LMH. | Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out of plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Tier 2: Sec. 13.6.2, 13.6.8; Commentary: Sec. A.7.10.1) | | | | X | Further investigation is required to verify stair wall out-of-plane anchorage. | | S-2 Stair Details. HR-not
required; LS-LMH; PR-
LMH. | The connection between the stairs and the structure does not rely on post-installed anchors in concrete or masonry, and the stair details are capable of accommodating the drift calculated using the Quick Check procedure of Section 4.4.3.1 for moment-frame structures or 0.5 in. for all other structures without including any lateral stiffness contribution from the stairs. (Tier 2: Sec. 13.6.8; Commentary: Sec. A.7.10.2) | | | | X | Further investigation is required to verify stair connections. | # **Contents and Furnishings** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) | | | X | | | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | | | X | Further investigation is required to review anchorage of tall narrow contents. All tall narrow contents should be anchored to the structure. | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | X | | | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm) high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec. A.7.11.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) |
 X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |--|---|--|---|---| | CF-6 Suspended
Contents. HR-not
required; LS-not
required; PR-H. | Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|--| | ME-1 Fall-Prone
Equipment. HR-not
required; LS-H; PR-H. | Equipment weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level, and which is not in-line equipment, is braced. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.4) | | | X | | | | ME-2 In-Line
Equipment. HR-not
required; LS-H; PR-H. | Equipment installed in line with a duct or piping system, with an operating weight more than 75 lb (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | X | | | | | | ME-3 Tall Narrow
Equipment. HR-not
required; LS-H; PR-MH. | Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.6) | | | | X | Further investigation is required to review anchorage of tall narrow equipment. All tall narrow equipment should be anchored to the structure. | | | Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Tier 2: Sec. 13.6.9; Commentary: Sec. A.7.12.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-5 Suspended
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.9) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-7 Heavy Equipment.
HR-not required; LS-not
required; PR-H. | Floor supported or platform-supported equipment weighing more than 400 lb (181.4 kg) is anchored to the structure. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-8 Electrical
Equipment. HR-not
required; LS-not
required; PR-H. | Electrical equipment is laterally braced to the structure. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.11) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Conduit greater than 2.5 in. (64 mm) trade size | | | | |-------------------|---|--|---|---------------------------| | ME-9 Conduit | that is attached to panels, cabinets, or other | | | Non-applicable due to | | Couplings. HR-not | equipment and is subject to relative seismic | | X | ASCE 41 Performance | | required; LS-not | displacement has flexible couplings or | | Λ | | | required; PR-H. | connections. (Tier 2: Sec. 13.7.8; Commentary: | | | Level: "Life Safety (LS)" | | | Sec. A.7.12.12) | | | | # Piping | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | | Fluid and gas piping has flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-2 Fluid and Gas
Piping. HR-not required;
LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-3 C-Clamps. HR-not
required; LS-not
required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### Elevators | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | EL-1 Retainer Guards.
HR-not required; LS-H;
PR-H. | Sheaves and drums have cable retainer guards. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.1) | | | | X | Further investigation is required to verify elevator sheaves and drums have cable retainer guards. | | EL-2 Retainer Plate. HR-
not required; LS-H; PR-
H. | A retainer plate is present at the top and bottom of both car and counterweight. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.2) | | | | X | Further investigation is required to verify proper installation of retainer plates. | | EL-3 Elevator Equipment. HR-not required; LS-not required; PR-H. | Equipment, piping, and other components that are part of the elevator system are anchored. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | EL-4 Seismic Switch. HR-not required; LS-not required; PR-H. | Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.4) | | | X | |
Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | EL-5 Shaft Walls. HR-
not required; LS-not
required; PR-H. | Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | EL-6 Counterweight
Rails. HR-not required;
LS-not required; PR-H. | All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | EL-7 Brackets. HR-not
required; LS-not
required; PR-H. | The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | EL-8 Spreader Bracket.
HR-not required; LS-not
required; PR-H. | Spreader brackets are not used to resist seismic forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.8) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | EL-9 Go-Slow Elevators.
HR-not required; LS-not
required; PR-H. | , | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # 1. Longview, R. A. Long High School, RA Long Annex # 1.1 Building Description Building Name: RA Long Annex Facility Name: R. A. Long High School District Name: Longview ICOS Latitude: 46.141 ICOS Longitude: -122.955 **ICOS** County/District ID: 8122 ICOS Building ID: 18592 ASCE 41 Bldg Type: W2 Enrollment: 928 Gross Sq. Ft.: 9,592 Year Built: 1963 Number of Stories: 1 S_{XS BSE-2E}: 0.909 S_{X1 BSE-2E}: 0.872 ASCE 41 Level of Seismicity: High Site Class: E V_{S30}(m/s): 166 Liquefaction Moderate to High Potential: Tsunami Risk: None Structural Drawings Available: No Evaluating Firm: WRK Engineers The R.A. Long High School Annex Building is a one-story wood stud wall structure. The 1963 building is constructed on level ground and is located in Longview, Washington. The building is rectangular in plan, approximately 160 feet by 50 feet, with a maximum roof height of around 14 feet. The building's exterior walls are constructed out of wood studs and straight sheathing. The roof system is a flexible diaphragm composed of straight sheathing over wood beams. The building was originally built by the R.A. Long carpentry class as a school bus garage and then was later converted into the current structure. There are four garage bays on the north exterior that have been infilled with wood stud walls. The building shares the site with R.A. Long High School, Monticello Middle School, Olympic Elementary School, and a sports fields. ### 1.1.1 Building Use The R.A. Long Annex Building consists of classrooms, mechanical rooms, storage, and administrative offices. R.A. Long High School has over 920 student occupants. # 1.1.2 Structural System Table 1.1-1. Structural System Description of R. A. Long High School | Structural System | Description | |---------------------|--| | Structural Roof | The roof system is composed of straight sheathing over wood beams. | | Structural Floor(s) | The ground floor is a concrete slab-on-grade. | | Foundations | The walls are supported by continuous wall footings. The columns are supported | | roundations | by spread footings. | | Gravity System | The roof and floor are supported by wood beams, wood posts, and wood stud | | Oravity System | bearing walls. | | Lateral System | The lateral forces are resisted by straight-sheathed wood shear walls in the | | Lateral System | longitudinal and transverse directions. | # 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of R. A. Long High School | Structural System | Description | | | | | |---------------------|--|--|--|--|--| | Structural Roof | No visible signs of corrosion, damage, or deterioration. | | | | | | Structural Floor(s) | No visible signs of corrosion, damage, or deterioration. | | | | | | Foundations | Unknown. | | | | | | Gravity System | No visible signs of corrosion, damage, or deterioration. | | | | | | Lateral System | No visible signs of corrosion, damage, or deterioration. | | | | | # **1.2 Seismic Evaluation Findings** #### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Longview R. A. Long High School RA Long Annex | Deficiency | Description | |-----------------------|--| | Shear Stress
Check | Only exterior walls assumed to be shear walls. Pseudo shear stress is greater than 100 lb/ft. This building likely requires shear wall strengthening or the addition of new shear walls to reduce demand. Further investigation is required. | | | Shear walls with aspect ratios greater than 2-to-1 are present. This building likely requires shear wall strengthening or the addition of new shear walls. Further investigation is required. | | Straight Sheathing | The straight-sheathed diaphragm has aspect ratios greater than 2-to-1. Installation of plywood sheathing may be appropriate to mitigate seismic risk. | | Spans | The diaphragm consists of straight-sheathing. Diaphragm strengthening, such as installation of plywood sheathing, may be appropriate to mitigate seismic risk. | #### 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Longview R. A. Long High School RA Long Annex | Unknown Item | Description | |-----------------|--| | Lood Doth | No drawings available. This item requires further investigation to make a final determination on its compliance | | Load Path | and to develop a mitigation recommendation, if necessary. | | | The liquefaction potential of site soils is unknown at this time given available information. Moderate to high | | Liquefaction | liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by | | | a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of | | Rupture | expected surface fault ruptures. | | | This evaluation item is unknown due to lack of original building construction drawings and could not be | | Wood Posts | visually verified. This item requires further investigation to make a final determination on its compliance and to | | | develop a mitigation recommendation, if necessary. | | | This evaluation item is unknown due to lack of original building construction drawings and could not be | | Wood Sills | visually verified. This item requires further investigation to make a final determination on its compliance and to | | | develop a mitigation recommendation, if necessary. | | | This evaluation item is unknown due to lack of original building construction drawings and could not be | | Wood Sill Bolts | visually verified. This item requires further investigation to make a final determination on its compliance and to | | | develop a mitigation recommendation, if necessary. | #### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Longview R. A. Long High School RA Long Annex | | Description | |---|--| | CF-2 Tall Narrow Contents.
HR-not required; LS-H; PR-MH. | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural
checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Longview R. A. Long High School RA Long Annex | Unknown Item | Description | |-----------------------------|--| | LF-1 Independent Support. | Further investigation is required to review the support system for light fixtures. All light fixtures in | | HR-not required: LS-MH: PR- | grid ceiling system should have seismic bracing. | | PCOA-2 Canopies. HR-not | Further investigation is required to verify anchorage of canopies at building exits to the main | | required; LS-LMH; PR-LMH. | structure. | | ME-3 Tall Narrow Equipment. | | | HR-not required; LS-H; PR- | Further investigation is required to review anchorage of tall narrow equipment. | | MH. | | Figure 1-1. R.A. Long Annex - East Exterior Figure 1-2. R.A. Long Annex - Northeast Exterior Figure 1-3. R.A. Long Annex - North Exterior with Infilled Garage Bays Figure 1-4. R.A. Long Annex - South Exterior Figure 1-5. Straight Sheathing at Exterior Walls Figure 1-6. Straight Sheathing at Roof Diaphragm Figure 1-7. Interior Showing Suspended Mechanical Equipment and Wood Beam Framing Figure 1-8. Typical Classroom with Unknown Light Fixture Bracing Figure 1-9. Mechanical Room with Unbraced Piping Figure 1-10. Tall Unbraced Nonstructural Components, Typical Throughout ### Longview, R. A. Long High School, RA Long Annex ## 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ### **Low Seismicity** #### **Building System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|---| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | | | | X | No drawings available. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary: Sec. A.2.1.2) | X | | | | | | Mezzanines | Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | | | X | | | #### **Building System - Building Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------|--|---|----|-----|---|---------| | Weak Story | The sum of the shear strengths of the seismic-
force-resisting system in any story in each
direction is not less than 80% of the strength in
the adjacent story above. (Tier 2: Sec. 5.4.2.1;
Commentary: Sec. A.2.2.2) | | | X | | | | Soft Story | The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Tier 2: Sec. 5.4.2.2; Commentary: Sec. A.2.2.3) | | | X | | | | Vertical Irregularities | All vertical elements in the seismic-forceresisting system are continuous to the foundation. (Tier 2: Sec. 5.4.2.3; Commentary: Sec. A.2.2.4) | X | | | | | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | | X | | |----------|--|---|---|--| | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | | X | | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary: Sec. A.2.2.7) | X | | | ## Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) ### **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------|--|---|----|-----|---|---| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Moderate to high liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected surface fault ruptures. | ## High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ### **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|---------| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | X | | | | | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | | | X | | | ### 17-6 Collapse Prevention Structural Checklist for Building Type W2 Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked
Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ### Low and Moderate Seismicity #### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | X | | | | | | Shear Stress Check | The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: Structural panel sheathing – 1,000 lb/ft; Diagonal sheathing – 700 lb/ft; Straight sheathing – 100 lb/ft; All other conditions – 100 lb/ft. (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.7.1) | | X | | | Only exterior walls assumed to be shear walls. Pseudo shear stress is greater than 100 lb/ft. This building likely requires shear wall strengthening or the addition of new shear walls to reduce demand. Further investigation is required. | | Stucco (Exterior
Plaster) Shear Walls | Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.2) | | | X | | | | Gypsum Wallboard or
Plaster Shear Walls | Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.3) | | | X | | | | Narrow Wood Shear
Walls | Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Tier 2: Sec. 5.5.3.6.1; Commentary: Sec. A.3.2.7.4) | | X | | | Shear walls with aspect ratios greater than 2-to-1 are present. This building likely requires shear wall strengthening or the addition of new shear walls. Further investigation is required. | | Walls Connected
Through Floors | Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Tier 2: Sec. 5.5.3.6.2; Commentary: Sec. A.3.2.7.5) | | | X | | | | Hillside Site | For structures that are taller on at least one side
by more than one-half story because of a sloping
site, all shear walls on the downhill slope have
an aspect ratio less than 1-to-1. (Tier 2: Sec.
5.5.3.6.3; Commentary: Sec. A.3.2.7.6) | | | X | | | | Cripple Walls | Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels. (Tier 2: Sec. 5.5.3.6.4; Commentary: Sec. A.3.2.7.7) | | X | | |---------------|--|--|---|--| | Openings | Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces. (Tier 2: Sec. 5.5.3.6.5; Commentary: Sec. A.3.2.7.8) | | X | | ### Connections | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------------|---|---|----|-----|---|---| | Wood Posts | There is a positive connection of wood posts to the foundation. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.3) | | | | X | This evaluation item is unknown due to lack of original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Wood Sills | All wood sills are bolted to the foundation. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.4) | | | | X | This evaluation item is unknown due to lack of original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Girder-Column
Connection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | X | | | | | ## High Seismicity (Complete the Following Items in Addition to the Items for Low & Moderate Seismicity) ### Connections | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---| | Wood Sill Bolts | Sill bolts are spaced at 6 ft (1.8 m) or less with acceptable edge and end distance provided for wood and concrete. (Tier 2: Sec. 5.7.3.3; Commentary: Sec. A.5.3.7) | | | | X | This evaluation item is unknown due to lack of original building construction drawings and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | ### Diaphragms | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|--| | Diaphragm Continuity | The diaphragms are not composed of split-level floors and do not have expansion joints. (Tier 2: Sec. 5.6.1.1; Commentary: Sec. A.4.1.1) | X | | | | | | Roof Chord Continuity | All chord elements are continuous, regardless of changes in roof elevation. (Tier 2: Sec. 5.6.1.1; Commentary: Sec. A.4.1.3) | X | | | | | | Diaphragm
Reinforcement at
Openings | There is reinforcing around all diaphragm openings larger than 50% of the building width in either major plan dimension. (Tier 2: Sec. 5.6.1.5; Commentary: Sec. A.4.1.8) | | | X | | | | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.1) | | X | | | The straight-sheathed diaphragm has aspect ratios greater than 2-to-1. Installation of plywood sheathing may be appropriate to mitigate seismic risk. | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | | X | | | The diaphragm consists of straight-sheathing. Diaphragm strengthening, such as installation of plywood sheathing, may be appropriate to mitigate seismic risk. | | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and have aspect ratios less than or equal to 4-to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | | | X | | | | Other Dianhragms | The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Tier 2: Sec. 5.6.5; Commentary: Sec. | X | | | |------------------|---|---|--|--| | | A.4.7.1) | | | | ## Longview, R. A. Long High School, RA Long Annex ## 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High #### **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1)
| | | X | | No fire sprinklers | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | X | | | | LSS-3 Emergency
Power. HR-not required;
LS-LMH; PR-LMH. | Equipment used to power or control Life Safety systems is anchored or braced. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | | X | | No emergency generator | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | X | | | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | | X | | | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | HM-1 Hazardous
Material Equipment. HR-
LMH; LS-LMH; PR-
LMH. | Equipment mounted on vibration isolators and containing hazardous material is equipped with restraints or snubbers. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.2) | | | X | | | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | | X | | | | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | | | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | | X | | | |--|--|--|---|--|--| | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | | X | | | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | X | | | ### **Partitions** | 1 at titions | | | | | | | |---|--|---|----|-----|---|---| | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | | P-1 Unreinforced
Masonry. HR-LMH; LS-
LMH; PR-LMH. | Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | | X | | | | P-2 Heavy Partitions
Supported by Ceilings.
HR-LMH; LS-LMH; PR-
LMH. | The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | | | P-3 Drift. HR-not
required; LS-MH; PR-
MH. | Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.2) | | | X | | | | P-4 Light Partitions
Supported by Ceilings.
HR-not required; LS-not
required; PR-MH. | The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-5 Structural
Separations. HR-not
required; LS-not
required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-6 Tops. HR-not
required; LS-not
required; PR-MH. | The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### Ceilings | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-7 Seismic Joints. HR-
not required; LS-not
required; PR-H. | Acoustical tile or lay-in panel ceilings have seismic separation joints such that each continuous portion of the ceiling is no more than 2,500 ft2 (232.3 m2) and has a ratio of long-to-short dimension no more than 4-to-1. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--
--|---|----|-----|---|---| | LF-1 Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec. 13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | | X | Further investigation is required to review the support system for light fixtures. All light fixtures in grid ceiling system should have seismic bracing. | | LF-2 Pendant Supports.
HR-not required; LS-not
required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | LF-3 Lens Covers. HR-
not required; LS-not
required; PR-H. | Lens covers on light fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | | | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | | | X | | | | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | X | | |--|--|---|--| | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | X | | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | X | | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | X | | | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | X | | | CG-8 Overhead Glazing.
HR-not required; LS-
MH; PR-MH. | Glazing panes of any size in curtain walls and individual interior or exterior panes more than 16 ft2 (1.5 m2) in area are laminated annealed or laminated heat-strengthened glass and are detailed to remain in the frame when cracked. (Tier 2: Sec. 13.6.1.5; Commentary: Sec. A.7.4.8) | X | | ### **Masonry Veneer** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|-------------------| | M-1 Ties. HR-not
required; LS-LMH; PR-
LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | X | | No masonry veneer | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | X | | No masonry veneer | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | X | | No masonry veneer | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | X | | No masonry veneer | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | No masonry veneer | | M-6 Anchorage. HR-not required; LS-MH; PR-MH. | For veneer with concrete block or masonry backup, the backup is positively anchored to the structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | X | | No masonry veneer | | M-7 Weep Holes. HR-not
required; LS-not
required; PR-MH. | In veneer anchored to stud walls, the veneer has functioning weep holes and base flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | X | | No masonry veneer | | M-8 Openings. HR-not required; LS-not required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | | X | | No masonry veneer | ### Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---------| | * | Laterally unsupported
unreinforced masonry parapets or cornices have height-tothickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.1) | | | X | | | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | | | X | Further investigation is required to verify anchorage of canopies at building exits to the main structure. | |--|--|--|---|---|--| | PCOA-3 Concrete
Parapets. HR-H; LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | | X | | | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | | X | | | ### **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | | X | | | | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | Masonry chimneys are anchored at each floor level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | | X | | | ### Stairs | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | S-1 Stair Enclosures. HR-not required; LS- LMH; PR-LMH. S | Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out of plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Tier 2: Sec. 13.6.2, 13.6.8; Commentary: Sec. A.7.10.1) | | NC | X | U | COMMENT | | | The connection between the stairs and the | | | | | | |---|---|--|---|--|--|--| | | structure does not rely on post-installed anchors | | | | | | | | in concrete or masonry, and the stair details are | | | | | | | | capable of accommodating the drift calculated | | | | | | | S-2 Stair Details. HR-not required; LS-LMH; PR- | using the Quick Check procedure of Section | | X | | | | | * ' | 4.4.3.1 for moment-frame structures or 0.5 in. | | Λ | | | | | LMH. | for all other structures without including any | | | | | | | | lateral stiffness contribution from the stairs. | | | | | | | | (Tier 2: Sec. 13.6.8; Commentary: Sec. | | | | | | | | A.7.10.2) | | | | | | ### **Contents and Furnishings** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) | | | X | | | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | X | | | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | X | | | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm) high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec. A.7.11.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-6 Suspended
Contents. HR-not
required; LS-not
required; PR-H. | Items suspended without lateral bracing are free to swing from or move with the structure from which they are suspended without damaging themselves or adjoining components. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------|--|---|----|-----|---|---------| | | Equipment weighing more than 20 lb (9.1 kg) | | | | | | | ME-1 Fall-Prone | whose center of mass is more than 4 ft (1.2 m) | | | | | | | Equipment. HR-not | above the adjacent floor level, and which is not | | | X | | | | required; LS-H; PR-H. | in-line equipment, is braced. (Tier 2: Sec. 13.7.1 | | | | | | | | 13.7.7; Commentary: Sec. A.7.12.4) | | | | | | | ME-2 In-Line
Equipment. HR-not
required; LS-H; PR-H. | Equipment installed in line with a duct or piping system, with an operating weight more than 75 lb (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | | X | | | |--|---|--|---|---|---| | ME-3 Tall Narrow
Equipment. HR-not
required; LS-H; PR-MH. | Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.6) | | | X | Further investigation is required to review anchorage of tall narrow equipment. | | ME-4 Mechanical Doors.
HR-not required; LS-not
required; PR-MH. | Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Tier 2: Sec. 13.6.9; Commentary: Sec. A.7.12.7) | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-5 Suspended
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-6 Vibration Isolators.
HR-not required;
LS-not
required; PR-H. | 1 11 | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-7 Heavy Equipment.
HR-not required; LS-not
required; PR-H. | Floor supported or platform-supported equipment weighing more than 400 lb (181.4 kg) is anchored to the structure. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-8 Electrical Equipment. HR-not required; LS-not required; PR-H. | Electrical equipment is laterally braced to the structure. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.11) | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-9 Conduit
Couplings. HR-not
required; LS-not
required; PR-H. | Conduit greater than 2.5 in. (64 mm) trade size that is attached to panels, cabinets, or other equipment and is subject to relative seismic displacement has flexible couplings or connections. (Tier 2: Sec. 13.7.8; Commentary: Sec. A.7.12.12) | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## Piping | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|---| | | Fluid and gas piping has flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-2 Fluid and Gas
Piping. HR-not required;
LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-3 C-Clamps. HR-not required; LS-not required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |---|---|--|---|---| | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | Х | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Elevators** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|-------------| | EL-1 Retainer Guards.
HR-not required; LS-H;
PR-H. | Sheaves and drums have cable retainer guards. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.1) | | | X | | No elevator | | EL-2 Retainer Plate. HR-
not required; LS-H; PR-
H. | A retainer plate is present at the top and bottom of both car and counterweight. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.2) | | | X | | No elevator | | EL-3 Elevator
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment, piping, and other components that are part of the elevator system are anchored. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.3) | | | X | | No elevator | | EL-4 Seismic Switch.
HR-not required; LS-not
required; PR-H. | Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.4) | | | X | | No elevator | | EL-5 Shaft Walls. HR-
not required; LS-not
required; PR-H. | Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.5) | X | No elevator | |---|--|---|-------------| | EL-6 Counterweight
Rails. HR-not required;
LS-not required; PR-H. | All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.6) | X | No elevator | | EL-7 Brackets. HR-not required; LS-not required; PR-H. | The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.7) | X | No elevator | | EL-8 Spreader Bracket.
HR-not required; LS-not
required; PR-H. | Spreader brackets are not used to resist seismic forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.8) | X | No elevator | | EL-9 Go-Slow Elevators.
HR-not required; LS-not
required; PR-H. | The building has a go-slow elevator system. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.9) | X | No elevator | # 1. Longview, R. A. Long High School, Science Wing 1935 ### 1.1 Building Description Building Name: Science Wing Facility Name: R. A. Long High School District Name: Longview ICOS Latitude: 46.141 ICOS Longitude: -122.955 **ICOS** Year Built: County/District ID: 8122 ICOS Building ID: 16645 ASCE 41 Bldg Type: RM1 Enrollment: 928 Gross Sq. Ft.: 15,316 Number of Stories: 1 S_{XS BSE-2E}: 0.909 S_{X1 BSE-2E}: 0.872 ASCE 41 Level of Seismicity: Site Class: V_{S30}(m/s): 166 Liquefaction Moderate to High Tsunami Risk: None Structural Drawings Available: Yes Evaluating Firm: WRK Engineers The R.A. Long High School Science Wing is a one-story reinforced masonry structure. The building is constructed on level ground and is located in Longview, Washington. The 1935 building is rectangular in plan, approximately 160 feet by 100 feet, with a maximum roof height of around 14 feet. The building's exterior walls are constructed out of grouted, reinforced brick masonry. The interior walls are constructed out of 2x wood studs with gypsum board sheathing on each side. The roof system is a flexible diaphragm composed of plywood sheathing over wood joists. The main floor is a flexible, elevated diaphragm composed of plywood sheathing over 2-inch T&G decking supported by wood beams and 2x8 joists. The building has covered walkways on the north and west sides and an arcade along the east side. The mechanical units are on the roof. Multiple exterior windows have been infilled with brick masonry. The building attaches to the main high school building on the north end. The building shares the site with R.A. Long High School's main building, the gymnasium, and Discovery High School. ### 1.1.1 Building Use The R.A. Long Science Wing consists of science classrooms, laboratories, and storage spaces. R.A. Long High School has over 920 student occupants. ### 1.1.2 Structural System Table 1.1-1. Structural System Description of R. A. Long High School | Structural System | Description | |---------------------
--| | Structural Roof | The roof system is composed of plywood sheathing over wood joists. | | Structural Floor(s) | The main floor is an elevated floor composed of plywood sheathing over 2-inch T&G decking. The diaphragm is supported by 2x8 wood joists spanning between wood beams. | | Foundations | The exterior walls are supported by continuous wall footings. The interior walls and columns are supported by a post-and-beam system supported by spread footings. | | Gravity System | The roof diaphragm is supported by wood joists spanning between exterior brick bearing walls and interior wood stud bearing walls. The main floor and interior bearing walls are supported by 8x wood floor beams. | | Lateral System | The lateral forces are resisted by reinforced brick masonry walls in the longitudinal and transverse directions. | ### 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of R. A. Long High School | Structural System | Description | |---------------------|--| | Structural Roof | No visible signs of corrosion, damage, or deterioration. | | Structural Floor(s) | No visible signs of corrosion, damage, or deterioration. | | Foundations | Unknown. | | Gravity System | No visible signs of corrosion, damage, or deterioration. | | Lateral System | No visible signs of corrosion, damage, or deterioration. | # **1.2 Seismic Evaluation Findings** #### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Longview R. A. Long High School Science Wing | Deficiency | Description | |----------------|---| | Wall Anchorage | Out-of-plane wall anchorage not present. Tension ties, blocking, strapping, and diaphragm nailing required | | | along masonry walls. | | | The building does not have continuous cross ties between diaphragm chords. The addition of new cross ties | | | between diaphragm chords or the addition of strap plates to connect existing framing members together may be | | | appropriate to mitigate seismic risk. | | Diagonally | | | Sheathed and | The diaphragm has spans larger than 40 feet. Diaphragm strengthening, such as the addition of blocking and | | Unblocked | additional diaphragm nailing. may be appropriate to mitigate seismic risk. Further investigation is required. | | Diaphragms | | #### 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Longview R. A. Long High School Science Wing | Unknown Item | Description | |-------------------|---| | | The liquefaction potential of site soils is unknown at this time given available information. Moderate to high | | _ | liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by | | | a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of | | Rupture | expected surface fault ruptures. | | • | This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further | | | field investigation to make a final determination on its compliance. Strengthening of masonry walls, such as | | | FRP or steel strongbacks, may be appropriate. | | Stiffness of Wall | This evaluation item is unknown and could not be visually verified. This item requires further investigation to | | Anchors | make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | #### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Longview R. A. Long High School Science Wing | Deficiency | Description | |---|--| | LSS-1 Fire Suppression
Piping. HR-not required; LS-
LMH; PR-LMH. | Fire suppression not anchored and braced. All fire suppression piping should be braced in accordance with NFPA-13. | | LSS-5 Sprinkler Ceiling
Clearance. HR-not required;
LS-MH; PR-MH. | Inadequate penetration clearances at panelized ceilings for fire suppression devices. Provide clearance around sprinkler head or provide flexible lines between horizontal piping and sprinkler heads. | | CF-2 Tall Narrow Contents.
HR-not required; LS-H; PR-MH. | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Longview R. A. Long High School Science Wing | Unknown Item | Description | |--|--| | LSS-2 Flexible Couplings.
HR-not required; LS-LMH;
PR-LMH. | Further investigation is required to review fire suppression for flexible couplings. If non-existent, the addition of flexible couplings may be appropriate. | | C-1 Suspended Lath and
Plaster. HR-H; LS-MH; PR-
LMH. | Further investigation is required to review suspended ceiling attachments. | | C-2 Suspended Gypsum
Board. HR-not required; LS-
MH; PR-LMH. | Further investigation is required to review suspended ceiling attachments. | | LF-1 Independent Support.
HR-not required; LS-MH; PR-MH. | Further investigation is required to review the support system for light fixtures. All light fixtures in grid ceiling system should have seismic bracing. | | PCOA-4 Appendages. HR-MH; LS-MH; PR-LMH. | Further investigation is required to verify reinforcing/anchorage of appendages extending above the main structural building system. | Figure 1-1. R.A. Long High School Science Wing - East Exterior Figure 1-2. R.A. Long High School Science Wing - South Exterior Figure 1-3. R.A. Long High School Science Wing - Northwest Exterior Figure 1-4. Science Wing Connection to Main Building at North Exterior Figure 1-5. View Down Arcade Along East Exterior Figure 1-6. Infilled Windows at Exterior Figure 1-7. Typical Classroom with Inadequate Fire Sprinkler Head Penetration Clearance, Typical Throughout Figure 1-8. Entrance at West Side. Unknown Light Fixture Bracing, Typical. Figure 1-9. Tall Unbraced Nonstructural Components, Typical Throughout Figure 1-10. Fire Riser and Fire Suppression Piping Should Be Braced ## Longview, R. A. Long High School, Science Wing ## 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. #### **Low Seismicity** #### **Building
System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|---------| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | X | | | | | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary: Sec. A.2.1.2) | X | | | | | | Mezzanines | Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | | | X | | | #### **Building System - Building Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------|--|---|----|-----|---|---------| | | The sum of the shear strengths of the seismic- | | | | | | | | force-resisting system in any story in each | | | | | | | Weak Story | direction is not less than 80% of the strength in | | | X | | | | | the adjacent story above. (Tier 2: Sec. 5.4.2.1; | | | | | | | | Commentary: Sec. A.2.2.2) | | | | | | | | The stiffness of the seismic-force-resisting | | | | | | | | system in any story is not less than 70% of the | | | | | | | | seismic-force-resisting system stiffness in an | | | | | | | Soft Story | adjacent story above or less than 80% of the | | | X | | | | | average seismic-force-resisting system stiffness | | | | | | | | of the three stories above. (Tier 2: Sec. 5.4.2.2; | | | | | | | | Commentary: Sec. A.2.2.3) | | | | | | | | All vertical elements in the seismic-force- | | | | | | | Vertical Irragularities | resisting system are continuous to the | X | | | | | | Vertical Irregularities | foundation. (Tier 2: Sec. 5.4.2.3; Commentary: | Λ | | | | | | | Sec. A.2.2.4) | | | | | | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | | X | | |----------|--|---|---|--| | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | | X | | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary: Sec. A.2.2.7) | X | | | ## Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) ## **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------------|--|---|----|-----|---|---| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Moderate to high liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of expected surface fault ruptures. | ## High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) #### **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|---------| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | X | | | | | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | | | X | | | ## 17-34 Collapse Prevention Structural Checklist for Building Types RM1 and RM2 Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ## Low and Moderate Seismicity #### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|--|---|----|-----|---|---| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | X | | | | | | Shear Stress Check | The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than 70 lb/in.2 (0.48 MPa). (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.4.1) | X | | | | | | Reinforcing Steel | The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in. (1220 mm), and all vertical bars extend to the top of the walls. (Tier 2: Sec. 5.5.3.1.3; Commentary: Sec. A.3.2.4.2) | | | | X | This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further field investigation to make a final determination on its compliance. Strengthening of masonry walls, such as FRP or steel strongbacks, may be appropriate. | #### **Stiff Diaphragms** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---------| | Tonning Slah | Precast concrete diaphragm elements are interconnected by a continuous reinforced concrete topping slab. (Tier 2: Sec. 5.6.4; Commentary: Sec. A.4.5.1) | | | X | | | #### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------
--|---|----|-----|---|---| | Wall Anchorage | Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Tier 2: Sec. 5.7.1.1; Commentary: Sec. A.5.1.1) | | X | | | Out-of-plane wall anchorage
not present. Tension ties,
blocking, strapping, and
diaphragm nailing required
along masonry walls. | | Wood Ledgers | The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Tier 2: Sec. 5.7.1.3; Commentary: Sec. A.5.1.2) | X | | | |------------------------------------|---|---|---|--| | Transfer to Shear Walls | Diaphragms are connected for transfer of seismic forces to the shear walls. (Tier 2: Sec. 5.7.2; Commentary: Sec. A.5.2.1) | X | | | | Topping Slab to Walls
or Frames | Reinforced concrete topping slabs that interconnect the precast concrete diaphragm elements are doweled for transfer of forces into the shear wall or frame elements. (Tier 2: Sec. 5.7.2; Commentary: Sec. A.5.2.) | | X | | | Foundation Dowels | Wall reinforcement is doweled into the foundation. (Tier 2: Sec. 5.7.3.4; Commentary: Sec. A.5.3.5) | X | | | | Girder-Column
Connection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | X | | | ## High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ## Stiff Diaphragms | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |----------------------------|--|---|----|-----|---|---------| | Openings at Shear
Walls | Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.4) | | | X | | | | 1 2 | Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.6) | | | X | | | #### Flexible Diaphragms | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |----------------------------|---|---|----|-----|---|--| | Cross Ties | There are continuous cross ties between diaphragm chords. (Tier 2: Sec. 5.6.1.2; Commentary: Sec. A.4.1.2) | | X | | | The building does not have continuous cross ties between diaphragm chords. The addition of new cross ties between diaphragm chords or the addition of strap plates to connect existing framing members together may be appropriate to mitigate seismic risk. | | Openings at Shear
Walls | Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.4) | | | X | | | | Openings at Exterior
Masonry Shear Walls | Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.6) | | | X | | |--|---|---|---|---|--| | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.1) | | | X | | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | X | | | | | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4 to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | | X | | The diaphragm has spans larger than 40 feet. Diaphragm strengthening, such as the addition of blocking and additional diaphragm nailing. may be appropriate to mitigate seismic risk. Further investigation is required. | | Other Diaphragms | Diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Tier 2: Sec. 5.6.5; Commentary: Sec. A.4.7.1) | X | | | | #### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |------------------------------|---|---|----|-----|---|--| | Stiffness of Wall
Anchors | Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. (3 mm) before engagement of the anchors. (Tier 2: Sec. 5.7.1.2; Commentary: Sec. A.5.1.4) | | | | X | This evaluation item is unknown and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | ## Longview, R. A. Long High School, Science Wing ## 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High #### **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|--| | LSS-1 Fire Suppression
Piping. HR-not required;
LS-LMH; PR-LMH. | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1) | | X | | | Fire suppression not
anchored and braced. All
fire suppression piping
should be braced in
accordance with NFPA-13. | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | | X | Further investigation is required to review fire suppression for flexible couplings. If non-existent, the addition of flexible couplings may be appropriate. | | LSS-3 Emergency
Power. HR-not required;
LS-LMH; PR-LMH. | Equipment used to power or control Life Safety systems is anchored or braced. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | | X | | None observed | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | X | | | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | X | | | Inadequate penetration clearances at panelized ceilings for fire suppression devices. Provide clearance around sprinkler head or provide flexible lines between horizontal piping and sprinkler heads. | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | Non-applicable due
to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------|--|---|----|-----|---|---------| | HM-1 Hazardous | Equipment mounted on vibration isolators and | | | | | | | Material Equipment. HR- | containing hazardous material is equipped with | | | v | | | | LMH; LS-LMH; PR- | restraints or snubbers. (Tier 2: Sec. 13.7.1; | | | Λ | | | | LMH. | Commentary: Sec. A.7.12.2) | | | | | | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | X | | |--|--|--|---|---------------| | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | X | None observed | | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | | X | None observed | | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | | X | | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | X | | #### **Partitions** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | P-1 Unreinforced
Masonry. HR-LMH; LS-
LMH; PR-LMH. | Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | | X | | | | P-2 Heavy Partitions
Supported by Ceilings.
HR-LMH; LS-LMH; PR-
LMH. | The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | | | P-3 Drift. HR-not
required; LS-MH; PR-
MH. | Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.2) | | | X | | | | | The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-5 Structural Separations. HR-not required; LS-not required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |--|--|--|---|---| | P-6 Tops. HR-not
required; LS-not
required; PR-MH. | The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## Ceilings | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | | X | Further investigation is required to review suspended ceiling attachments. | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | | X | Further investigation is required to review suspended ceiling attachments. | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Acoustical tile or lay-in panel ceilings have | | | | |-------------------------|---|--|----|---------------------------| | C-7 Seismic Joints. HR- | seismic separation joints such that each | | | Non-applicable due to | | not required: LS-not | continuous portion of the ceiling is no more than | | X | ASCE 41 Performance | | required; PR-H. | 2,500 ft2 (232.3 m2) and has a ratio of long-to- | | 21 | Level: "Life Safety (LS)" | | required, 11t 11. | short dimension no more than 4-to-1. (Tier 2: | | | Eeven. Elie suiety (Es) | | | Sec. 13.6.4; Commentary: Sec. A.7.2.7) | | | | ## **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---| | LF-1 Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec.
13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | | X | Further investigation is required to review the support system for light fixtures. All light fixtures in grid ceiling system should have seismic bracing. | | LF-2 Pendant Supports. HR-not required; LS-not required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | LF-3 Lens Covers. HR-
not required; LS-not
required; PR-H. | Lens covers on light fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | | | | |
 |
 | |--|--|------|------| | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | X | | | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | X | | | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | X | | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | Х | | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | X | | | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | X | | | | Glazing panes of any size in curtain walls and | | | | | | |------------------------|---|--|---|--|--|--| | | individual interior or exterior panes more than | | | | | | | CG-8 Overhead Glazing. | 16 ft2 (1.5 m2) in area are laminated annealed | | | | | | | HR-not required; LS- | or laminated heat-strengthened glass and are | | X | | | | | MH; PR-MH. | detailed to remain in the frame when cracked. | | | | | | | | (Tier 2: Sec. 13.6.1.5; Commentary: Sec. | | | | | | | | A.7.4.8) | | | | | | ## **Masonry Veneer** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|-------------------| | M-1 Ties. HR-not required; LS-LMH; PR-LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | X | | No masonry veneer | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | X | | No masonry veneer | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | X | | No masonry veneer | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | X | | No masonry veneer | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | No masonry veneer | | M-6 Anchorage. HR-not required; LS-MH; PR-MH. | structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | X | | No masonry veneer | | M-7 Weep Holes. HR-not
required; LS-not
required; PR-MH. | In veneer anchored to stud walls, the veneer has functioning weep holes and base flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | X | | No masonry veneer | | M-8 Openings. HR-not required; LS-not required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | | X | | No masonry veneer | ## Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|--| | PCOA-1 URM Parapets
or Cornices. HR-LMH;
LS-LMH; PR-LMH. | Laterally unsupported unreinforced masonry parapets or cornices have height-tothickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.1) | | | X | | | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | X | | | | | | PCOA-3 Concrete
Parapets. HR-H;
LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | | | X | | | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | | | | X | Further investigation is required to verify reinforcing/anchorage of appendages extending above the main structural building system. | ## **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | | X | | | | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | Masonry chimneys are anchored at each floor level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | | X | | | #### **Stairs** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---------| | S-1 Stair Enclosures.
HR-not required; LS-
LMH; PR-LMH. | Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out of plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Tier 2: Sec. 13.6.2, 13.6.8; Commentary: Sec. A.7.10.1) | | | X | | | | S-2 Stair Details. HR-not
required; LS-LMH; PR-
LMH. | The connection between the stairs and the structure does not rely on post-installed anchors in concrete or masonry, and the stair details are capable of accommodating the drift calculated using the Quick Check procedure of Section 4.4.3.1 for moment-frame structures or 0.5 in. for all other structures without including any lateral stiffness contribution from the stairs. (Tier 2: Sec. 13.6.8; Commentary: Sec. A.7.10.2) | | | X | | | ## **Contents and Furnishings** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|--| | CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) | | | X | | | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | X | | | Anchorage is required for tall narrow contents more than six feet high to provide overturning restraint. | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | X | | | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm) high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec. A.7.11.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-6 Suspended | Items suspended without lateral bracing are free | | | | |------------------|--|--|---|---------------------------| | Contents. HR-not | to swing from or move with the structure from | | | Non-applicable due to | | required; LS-not | which they are suspended without damaging | | X | ASCE 41 Performance | | required; PR-H. | themselves or adjoining components. (Tier 2: | | | Level: "Life Safety (LS)" | | required; PK-II. | Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | | | #### **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|---| | ME-1 Fall-Prone
Equipment. HR-not
required; LS-H; PR-H. | Equipment weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level, and which is not in-line equipment, is braced. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.4) | | | X | | | | ME-2 In-Line
Equipment. HR-not
required; LS-H; PR-H. | Equipment installed in line with a duct or piping system, with an operating weight more than 75 lb (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | | | X | | | | ME-3 Tall Narrow
Equipment. HR-not
required; LS-H; PR-MH. | Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.6) | | | X | | | | ME-4 Mechanical Doors.
HR-not required; LS-not
required; PR-MH. | Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Tier 2: Sec. 13.6.9; Commentary: Sec. A.7.12.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-5 Suspended
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.9) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-7 Heavy Equipment.
HR-not required; LS-not
required; PR-H. | Floor supported or platform-supported equipment weighing more than 400 lb (181.4 kg) is anchored to the structure. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-8 Electrical Equipment. HR-not required; LS-not required; PR-H. | Electrical equipment is laterally braced to the structure. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.11) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-9 Conduit
Couplings. HR-not
required; LS-not
required; PR-H. | Conduit greater than 2.5 in. (64 mm) trade size that is attached to panels, cabinets, or other equipment and is subject to relative seismic displacement has flexible couplings or connections. (Tier 2: Sec. 13.7.8; Commentary: Sec. A.7.12.12) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ## Piping | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---
---|---|----|-----|---|---| | | Fluid and gas piping has flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-2 Fluid and Gas
Piping. HR-not required;
LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-3 C-Clamps. HR-not
required; LS-not
required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### Elevators | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------------|---|---|----|-----|---|-------------| | EL-1 Retainer Guards. | Sheaves and drums have cable retainer guards. | | | | | | | HR-not required; LS-H; | (Tier 2: Sec. 13.7.11; Commentary: Sec. | | | X | | No elevator | | PR-H. | A.7.16.1) | | | | | | | EL-2 Retainer Plate. HR- | A retainer plate is present at the top and bottom | | | | | | | not required; LS-H; PR- | of both car and counterweight. (Tier 2: Sec. | | | X | | No elevator | | H. | 13.7.11; Commentary: Sec. A.7.16.2) | | | | | | | EL-3 Elevator
Equipment. HR-not
required; LS-not | Equipment, piping, and other components that are part of the elevator system are anchored. (Tier 2: Sec. 13.7.11; Commentary: Sec. | X | No elevate | or | |---|---|---|------------|----| | required; PR-H. | A.7.16.3) | | | | | EL-4 Seismic Switch.
HR-not required; LS-not
required; PR-H. | Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.4) | X | No elevat | or | | EL-5 Shaft Walls. HR-
not required; LS-not
required; PR-H. | Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.5) | X | No elevate | or | | EL-6 Counterweight
Rails. HR-not required;
LS-not required; PR-H. | All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.6) | X | No elevate | or | | EL-7 Brackets. HR-not
required; LS-not
required; PR-H. | The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.7) | X | No elevate | or | | EL-8 Spreader Bracket.
HR-not required; LS-not
required; PR-H. | Spreader brackets are not used to resist seismic forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.8) | X | No elevat | or | | EL-9 Go-Slow Elevators.
HR-not required; LS-not
required; PR-H. | | X | No elevate | or | ## 1. Longview, R. A. Long High School, Shop Bldg 1942 ## 1.1 Building Description Building Name: Shop Bldg Facility Name: R. A. Long High School District Name: Longview ICOS Latitude: 46.141 ICOS Longitude: -122.955 **ICOS** Year Built: County/District ID: 8122 ICOS Building ID: 19084 ASCE 41 Bldg Type: URM Enrollment: 928 Gross Sq. Ft.: 10,422 Number of Stories: 1 S_{XS BSE-2E}: 0.909 S_{X1 BSE-2E}: 0.872 ASCE 41 Level of Seismicity: High Site Class: E V_{S30}(m/s): 166 Liquefaction Moderate to High Potential: Tsunami Risk: None Structural Drawings Available: Yes Evaluating Firm: WRK Engineers The R.A. Long High School Shop is a one-story unreinforced masonry structure. The building is constructed on level ground and is located in Longview, Washington. The building is rectangular in plan, approximately 100 feet by 75 feet, with a maximum roof height of around 14 feet. The building's exterior walls are constructed out of unreinforced brick masonry. The roof system is a flexible diaphragm composed of straight sheathing over wood beams. The main floor is a concrete slab over concrete beams and columns. There is a wood-framed mezzanine level. Multiple exterior windows have been infilled with brick masonry. The building attaches to the main high school building on the south end. The building shares the site with R.A. Long High School's main building. #### 1.1.1 Building Use The R.A. Long High School Shop consists of classrooms, a shop, and a mezzanine. R.A. Long High School has over 920 student occupants. #### 1.1.2 Structural System Table 1.1-1. Structural System Description of R. A. Long High School | Structural System | Description | |---------------------|---| | Structural Roof | The roof system is composed of straight sheathing over wood beams. | | Structural Floor(s) | The main floor is a concrete slab supported by concrete beams. The mezzanine floor is a wood diaphragm supported by wood beams. | | Foundations | The exterior walls are supported by continuous wall footings. The main floor slab is supported by spread footings. | | Gravity System | The roof diaphragm is supported by wood beams spanning between exterior unreinforced masonry bearing walls and interior wood and steel columns. | | Lateral System | The lateral forces are resisted by unreinforced brick masonry walls in the longitudinal and transverse directions. | ## 1.1.3 Structural System Visual Condition Table 1.1-2. Structural System Condition Description of R. A. Long High School | Structural System | Description | |---------------------|--| | Structural Roof | Ceiling finishes show evidence of water damage. | | Structural Floor(s) | No visible signs of corrosion, damage, or deterioration. | | Foundations | Unknown. | | Gravity System | Cracking at separation of mortar joints evident at unreinforced masonry walls. | | Lateral System | Cracking at separation of mortar joints evident at unreinforced masonry walls. | ## **1.2 Seismic Evaluation Findings** #### 1.2.1 Structural Seismic Deficiencies The structural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Table 1-3. Identified Structural Seismic Deficiencies for Longview R. A. Long High School Shop Bldg | Deficiency | Description | |----------------|--| | Adjacent | The clear distance between buildings is greater than 1.5% of the building's height. Mitigation may be required. | | Buildings | Additional shear walls may
be appropriate to reduce building drift. Further investigation is required. | | Shear Stress | Pseudo shear stress is greater than 30 psi. The building likely requires masonry shear wall strengthening or the | | Check | addition of new shear walls. Further investigation is required. | | Wall Anaharaga | Out-of-plane wall anchorage is not present. Tension ties, blocking, strapping, and diaphragm nailing are | | Wall Anchorage | required along URM walls. | | | The building does not have continuous cross ties between diaphragm chords. The addition of new cross ties | | Cross Ties | between diaphragm chords or the addition of strap plates to connect existing framing members together may be | | | appropriate to mitigate seismic risk. | | Smana | The diaphragm consists of straight sheathing. Diaphragm strengthening, such as the installation of plywood | | Spans | sheathing, may be appropriate to mitigate seismic risk. | | Dage | Girder, and Truss Supports, Beams, girders, and trusses supported by URM walls or pilasters do not have | | Beam | independent secondary columns for support of vertical loads. The addition of secondary support is required. | #### 1.2.2 Structural Checklist Items Marked as 'U'nknown Where building structural component seismic adequacy was unknown due to lack of available information or limited observation, the structural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown structural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Table 1-4. Identified Structural Checklist Items Marked as Unknown for Longview R. A. Long High School Shop Bldg | Unknown Item | Description | |----------------------------|---| | Load Path | Drawings are incomplete. This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Mezzanines | It is unknown if interior mezzanine is adequately braced for seismic loads. Further investigation is required to make a final determination on this items compliance and to develop a mitigation recommendation, if necessary. | | Liquefaction | The liquefaction potential of site soils is unknown at this time given available information. Moderate to high liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | Surface Fault | Requires further investigation by a licensed geotechnical engineer to determine whether site is near locations of | | Rupture | expected surface fault ruptures. | | Wood Ledgers | This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Transfer to Shear
Walls | This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Masonry Layup | This evaluation item is unknown and cannot be visually verified. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Stiffness of Wall | This evaluation item is unknown and could not be visually verified. This item requires further investigation to | | Anchors | make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | #### 1.3.1 Nonstructural Seismic Deficiencies The nonstructural seismic deficiencies identified during the Tier 1 evaluation are summarized below. Commentary for each deficiency is also provided based on this evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-5. Identified Nonstructural Seismic Deficiencies for Longview R. A. Long High School Shop Bldg **Deficiency Description** The Tier 1 nonstructural seismic evaluation performed for this school building could not confirm nonstructural seismic deficiencies due to limited access for visual observation and/or lack of existing drawings available for review. Please refer to the next page of this report for the list of nonstructural items marked as "unknown" and commentary indicating the need for further investigation or the likelihood of compliance or non-compliance based on the age of construction. #### 1.3.2 Nonstructural Checklist Items Marked as 'U'nknown Where building nonstructural component seismic adequacy was unknown due to lack of available information or limited observation, the nonstructural checklist items were marked as "unknown". These items require further investigation if definitive determination of compliance or noncompliance is desired. The unknown nonstructural checklist items identified during the Tier 1 evaluation are summarized below. Commentary for each unknown item is also provided based on the evaluation. Some nonstructural deficiencies may be able to be mitigated by school district staff. Other nonstructural components that require more substantial mitigation may be more appropriately included in a long-term mitigation strategy. Some typical conceptual details for the seismic upgrade of nonstructural components can be found in the FEMA E-74 Excerpts appendix. Table 1-6. Identified Nonstructural Checklist Items Marked as Unknown for Longview R. A. Long High School Shop Bldg | Unknown Item | Description | |---|--| | LSS-1 Fire Suppression Piping. HR-not required; LS-LMH; PR-LMH. | Further investigation is required to review fire suppression anchorage and bracing. All fire suppression piping should be braced in accordance with NFPA-13. | | HR-not required: LN-LMH: | Further investigation is required to review fire suppression for flexible couplings. If non-existent, the addition of flexible couplings may be appropriate. | | S-2 Stair Details. HR-not required; LS-LMH; PR-LMH. | Further investigation is required to verify stair connections. | Figure 1-1. R.A. Long High School Shop - West Exterior Figure 1-2. Interior Entrance into Shop from Main Building Figure 1-3. Shop - North Interior with Mezzanine Figure 1-4. Shop - East Interior Figure 1-5. Evidence of Cracking in Masonry Wall Figure 1-6. Evidence of Water Damage at Ceiling Figure 1-7. Wood Beams Supported by Masonry Wall Only ## Longview, R. A. Long High School, Shop Bldg ## 17-2 Collapse Prevention Basic Configuration Checklist Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. #### **Low Seismicity** #### **Building System - General** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|---| | Load Path | The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Tier 2: Sec. 5.4.1.1; Commentary: Sec. A.2.1.10) | | | | X | Drawings are incomplete. This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Adjacent Buildings | The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Tier 2: Sec. 5.4.1.2; Commentary: Sec. A.2.1.2) | | X | | | The clear distance between buildings is greater than 1.5% of the building's height. Mitigation may be required. Additional shear walls may be appropriate
to reduce building drift. Further investigation is required. | | Mezzanines | Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Tier 2: Sec. 5.4.1.3; Commentary: Sec. A.2.1.3) | | | | X | It is unknown if interior mezzanine is adequately braced for seismic loads. Further investigation is required to make a final determination on this items compliance and to develop a mitigation recommendation, if necessary. | #### **Building System - Building Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---------| | Weak Story | The sum of the shear strengths of the seismic-
force-resisting system in any story in each
direction is not less than 80% of the strength in
the adjacent story above. (Tier 2: Sec. 5.4.2.1;
Commentary: Sec. A.2.2.2) | | | X | | | | Soft Story | The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Tier 2: Sec. 5.4.2.2; Commentary: Sec. A.2.2.3) | | X | | |-------------------------|--|---|---|--| | Vertical Irregularities | All vertical elements in the seismic-forceresisting system are continuous to the foundation. (Tier 2: Sec. 5.4.2.3; Commentary: Sec. A.2.2.4) | X | | | | Geometry | There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Tier 2: Sec. 5.4.2.4; Commentary: Sec. A.2.2.5) | | X | | | Mass | There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Tier 2: Sec. 5.4.2.5; Commentary: Sec. A.2.2.6) | | X | | | Torsion | The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Tier 2: Sec. 5.4.2.6; Commentary: Sec. A.2.2.7) | X | | | ## Moderate Seismicity (Complete the Following Items in Addition to the Items for Low Seismicity) ## **Geologic Site Hazards** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|---| | Liquefaction | Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2 m) under the building. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.1) | | | | X | The liquefaction potential of site soils is unknown at this time given available information. Moderate to high liquefaction potential is identified per ICOS based on state geologic mapping. Requires further investigation by a licensed geotechnical engineer to determine liquefaction potential. | | Slope Failure | The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.2) | | | | X | Requires further investigation by a licensed geotechnical engineer to determine susceptibility to slope failure. | | | | | | | | Requires further | |-----------------------|---|--|--|--|---|-----------------------------| | Surface Fault Rupture | Surface fault rupture and surface displacement at the building site are not anticipated. (Tier 2: Sec. 5.4.3.1; Commentary: Sec. A.6.1.3) | | | | | investigation by a licensed | | | | | | | v | geotechnical engineer to | | | | | | | Λ | determine whether site is | | | | | | | | near locations of expected | | | | | | | | surface fault ruptures. | # High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) #### **Foundation Configuration** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |-------------------------------------|---|---|----|-----|---|---------| | Overturning | The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than 0.6Sa. (Tier 2: Sec. 5.4.3.3; Commentary: Sec. A.6.2.1) | X | | | | | | Ties Between
Foundation Elements | The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Tier 2: Sec. 5.4.3.4; Commentary: Sec. A.6.2.2) | | | X | | | # 17-36 Collapse Prevention Structural Checklist for Building Types URM and URMa Building record drawings have been reviewed, when available, and a non-destructive field investigation has been performed for the subject building. Each of the required checklist items are marked Compliant (C), Noncompliant (NC), Not Applicable (N/A), or Unknown (U). Items marked Compliant indicate conditions that satisfy the performance objective, whereas items marked Noncompliant or Unknown indicate conditions that do not. Certain statements might not apply to the building being evaluated. ## Low and Moderate Seismicity #### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--------------------|---|---|----|-----|---|--| | Redundancy | The number of lines of shear walls in each principal direction is greater than or equal to 2. (Tier 2: Sec. 5.5.1.1; Commentary: Sec. A.3.2.1.1) | X | | | | | | Shear Stress Check | The shear stress in the unreinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than 30 lb/in.2 (0.21 MPa) for clay units and 70 lb/in.2 (0.48 MPa) for concrete units. (Tier 2: Sec. 5.5.3.1.1; Commentary: Sec. A.3.2.5.1) | | X | | | Pseudo shear stress is greater
than 30 psi. The building
likely requires masonry
shear wall strengthening or
the addition of new shear
walls. Further investigation
is required. | #### **Connections** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|--|---|----|-----|---|--| | Wall Anchorage | Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Tier 2: Sec. 5.7.1.1; Commentary: Sec. A.5.1.1) | | X | | | Out-of-plane wall anchorage is not present. Tension ties, blocking, strapping, and diaphragm nailing are required along URM walls. | | Wood Ledgers | The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Tier 2: Sec. 5.7.1.3; Commentary: Sec. A.5.1.2) | | | | X | This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Transfer to Shear Walls | Diaphragms are connected for transfer of seismic forces to the shear walls. (Tier 2: Sec. 5.7.2;
Commentary: Sec. A.5.2.1) | | | X | This evaluation item is unknown and likely non-compliant due to the building's age. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | |-----------------------------|---|---|--|---|--| | Girder-Column
Connection | There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Tier 2: Sec. 5.7.4.1; Commentary: Sec. A.5.4.1) | X | | | | # High Seismicity (Complete the Following Items in Addition to the Items for Low and Moderate Seismicity) ### **Seismic-Force-Resisting System** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-----------------|---|---|----|-----|---|---| | Proportions | The height-to-thickness ratio of the shear walls at each story is less than the following: Top story of multi-story building – 9; First story of multi-story building – 15; All other conditions – 13. (Tier 2: Sec. 5.5.3.1.2; Commentary: Sec. A.3.2.5.2) | X | | | | | | Masonry Layup | Filled collar joints of multi-wythe masonry walls have negligible voids. (Tier 2: Sec. 5.5.3.4.1; Commentary: Sec. A.3.2.5.3) | | | | X | This evaluation item is unknown and cannot be visually verified. This item requires further field investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | ### **Diaphragms (Stiff or Flexible)** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |----------------------------|--|---|----|-----|---|---------| | Openings at Shear
Walls | Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.4) | | | X | | | | | Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long. (Tier 2: Sec. 5.6.1.3; Commentary: Sec. A.4.1.6) | | | X | | | ### Flexible Diaphragms | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |------------------------|----------------------|---|----|-----|---|---------| | Cross Ties | There are continuous cross ties between diaphragm chords. (Tier 2: Sec. 5.6.1.2; Commentary: Sec. A.4.1.2) | | X | | The building does not have continuous cross ties between diaphragm chords. The addition of new cross ties between diaphragm chords or the addition of strap plates to connect existing framing members together may be appropriate to mitigate seismic risk. | |--|---|---|---|---|--| | Straight Sheathing | All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.1) | X | | | | | Spans | All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.2) | | X | | The diaphragm consists of straight sheathing. Diaphragm strengthening, such as the installation of plywood sheathing, may be appropriate to mitigate seismic risk. | | Diagonally Sheathed
and Unblocked
Diaphragms | All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4 to-1. (Tier 2: Sec. 5.6.2; Commentary: Sec. A.4.2.3) | | | X | | | Other Diaphragms | The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Tier 2: Sec. 5.6.5; Commentary: Sec. A.4.7.1) | X | | | | # Connections | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------------------|--|---|----|-----|---|--| | Stiffness of Wall
Anchors | Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than 1/8 in. before engagement of the anchors. (Tier 2: Sec. 5.7.1.2; Commentary: Sec. A.5.1.4) | | | | X | This evaluation item is unknown and could not be visually verified. This item requires further investigation to make a final determination on its compliance and to develop a mitigation recommendation, if necessary. | | Beam, Girder, and
Truss Supports | Beams, girders, and trusses supported by unreinforced masonry walls or pilasters have independent secondary columns for support of vertical loads. (Tier 2: Sec. 5.7.4.4; Commentary: Sec. A.5.4.5) | | X | | | Beams, girders, and trusses supported by URM walls or pilasters do not have independent secondary columns for support of vertical loads. The addition of secondary support is required. | # Longview, R. A. Long High School, Shop Bldg # 17-38 Nonstructural Checklist Notes: C = Compliant, NC = Noncompliant, N/A = Not Applicable, and U = Unknown. Performance Level: HR = Hazards Reduced, LS = Life Safety, and PR = Position Retention. Level of Seismicity: L = Low, M = Moderate, and H = High #### **Life Safety Systems** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|--| | LSS-1 Fire Suppression
Piping. HR-not required;
LS-LMH; PR-LMH. | Fire suppression piping is anchored and braced in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.1) | | | | X | Further investigation is required to review fire suppression anchorage and bracing. All fire suppression piping should be braced in accordance with NFPA-13. | | LSS-2 Flexible
Couplings. HR-not
required; LS-LMH; PR-
LMH. | Fire suppression piping has flexible couplings in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.2) | | | | X | Further investigation is required to review fire suppression for flexible couplings. If non-existent, the addition of flexible couplings may be appropriate. | | LSS-3 Emergency
Power. HR-not required;
LS-LMH; PR-LMH. | Equipment used to power or control Life Safety systems is anchored or braced. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.1) | | | X | | No emergency generator | | LSS-4 Stair and Smoke
Ducts. HR-not required;
LS-LMH; PR-LMH. | Stair pressurization and smoke control ducts are braced and have flexible connections at seismic joints. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.1) | | | X | | | | LSS-5 Sprinkler Ceiling
Clearance. HR-not
required; LS-MH; PR-
MH. | Penetrations through panelized ceilings for fire suppression devices provide clearances in accordance with NFPA-13. (Tier 2: Sec. 13.7.4; Commentary: Sec. A.7.13.3) | | | X | | | | LSS-6 Emergency
Lighting. HR-not
required; LS-not
required; PR-LMH | Emergency and egress lighting equipment is anchored or braced. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | #### **Hazardous Materials** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |-------------------------|--|---|----|-----|---|---------| | HM-1 Hazardous | Equipment mounted on vibration isolators and | | | | | | | Material Equipment. HR- | containing hazardous material is equipped with | | | v | | | | LMH; LS-LMH; PR- | restraints or snubbers. (Tier 2: Sec. 13.7.1; | | | Λ | | | | LMH. | Commentary: Sec. A.7.12.2) | | | | | | | HM-2 Hazardous
Material Storage. HR-
LMH; LS-LMH; PR-
LMH. | Breakable containers that hold hazardous material, including gas cylinders, are restrained by
latched doors, shelf lips, wires, or other methods. (Tier 2: Sec. 13.8.3; Commentary: Sec. A.7.15.1) | | X | | | |--|--|--|---|--|--| | HM-3 Hazardous
Material Distribution.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork conveying hazardous materials is braced or otherwise protected from damage that would allow hazardous material release. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | X | | | | HM-4 Shutoff Valves.
HR-MH; LS-MH; PR-
MH. | Piping containing hazardous material, including natural gas, has shutoff valves or other devices to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.3) | | X | | | | HM-5 Flexible
Couplings. HR-LMH;
LS-LMH; PR-LMH. | Hazardous material ductwork and piping, including natural gas piping, have flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.15.4) | | X | | | | HM-6 Piping or Ducts
Crossing Seismic Joints.
HR-MH; LS-MH; PR-
MH. | Piping or ductwork carrying hazardous material that either crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5, 13.7.6; Commentary: Sec. A.7.13.6) | | X | | | ### **Partitions** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | P-1 Unreinforced
Masonry. HR-LMH; LS-
LMH; PR-LMH. | Unreinforced masonry or hollow-clay tile partitions are braced at a spacing of at most 10 ft (3.0 m) in Low or Moderate Seismicity, or at most 6 ft (1.8 m) in High Seismicity. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.1) | | | X | | | | P-2 Heavy Partitions
Supported by Ceilings.
HR-LMH; LS-LMH; PR-
LMH. | The tops of masonry or hollow-clay tile partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | | | P-3 Drift. HR-not
required; LS-MH; PR-
MH. | Rigid cementitious partitions are detailed to accommodate the following drift ratios: in steel moment frame, concrete moment frame, and wood frame buildings, 0.02; in other buildings, 0.005. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.2) | | | X | | | | P-4 Light Partitions
Supported by Ceilings.
HR-not required; LS-not
required; PR-MH. | The tops of gypsum board partitions are not laterally supported by an integrated ceiling system. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.2.1) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | P-5 Structural
Separations. HR-not
required; LS-not
required; PR-MH. | Partitions that cross structural separations have seismic or control joints. (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.3) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | |---|--|--|---|---| | P-6 Tops. HR-not
required; LS-not
required; PR-MH. | The tops of ceiling-high framed or panelized partitions have lateral bracing to the structure at a spacing equal to or less than 6 ft (1.8 m). (Tier 2: Sec. 13.6.2; Commentary: Sec. A.7.1.4) | | X | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # Ceilings | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | C-1 Suspended Lath and
Plaster. HR-H; LS-MH;
PR-LMH. | Suspended lath and plaster ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-2 Suspended Gypsum
Board. HR-not required;
LS-MH; PR-LMH. | Suspended gypsum board ceilings have attachments that resist seismic forces for every 12 ft2 (1.1 m2) of area. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.3) | | | X | | | | C-3 Integrated Ceilings.
HR-not required; LS-not
required; PR-MH. | Integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) and ceilings of smaller areas that are not surrounded by restraining partitions are laterally restrained at a spacing no greater than 12 ft (3.6 m) with members attached to the structure above. Each restraint location has a minimum of four diagonal wires and compression struts, or diagonal members capable of resisting compression. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-4 Edge Clearance. HR-
not required; LS-not
required; PR-MH. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) have clearances from the enclosing wall or partition of at least the following: in Moderate Seismicity, 1/2 in. (13 mm); in High Seismicity, 3/4 in. (19 mm). (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-5 Continuity Across
Structure Joints. HR-not
required; LS-not
required; PR-MH. | The ceiling system does not cross any seismic joint and is not attached to multiple independent structures. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | C-6 Edge Support. HR-
not required; LS-not
required; PR-H. | The free edges of integrated suspended ceilings with continuous areas greater than 144 ft2 (13.4 m2) are supported by closure angles or channels not less than 2 in. (51 mm) wide. (Tier 2: Sec. 13.6.4; Commentary: Sec. A.7.2.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Acoustical tile or lay-in panel ceilings have | | | | | |-------------------------|---|---|---|---------------------|---------------------------| | C-7 Seismic Joints. HR- | seismic separation joints such that each | | | 1 | Non-applicable due to | | not required; LS-not | continuous portion of the ceiling is no more than | X | 1 | ASCE 41 Performance | | | required; PR-H. | 2,500 ft2 (232.3 m2) and has a ratio of long-to- | | |] | Level: "Life Safety (LS)" | | 1 , | short dimension no more than 4-to-1. (Tier 2: | | | | • | | | Sec. 13.6.4; Commentary: Sec. A.7.2.7) | | | | | # **Light Fixtures** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---| | LF-1 Independent
Support. HR-not
required; LS-MH; PR-
MH. | Light fixtures that weigh more per square foot than the ceiling they penetrate are supported independent of the grid ceiling suspension system by a minimum of two wires at diagonally opposite corners of each fixture. (Tier 2: Sec. 13.6.4, 13.7.9; Commentary: Sec. A.7.3.2) | | | X | | | | LF-2 Pendant Supports.
HR-not required; LS-not
required; PR-H. | Light fixtures on pendant supports are attached at a spacing equal to or less than 6 ft. Unbraced suspended fixtures are free to allow a 360-degree range of motion at an angle not less than 45 degrees from horizontal without contacting adjacent components. Alternatively, if rigidly supported and/or braced, they are free to move with the structure to which they are attached without damaging adjoining components. Additionally, the connection to the structure is capable of accommodating the movement without failure. (Tier 2: Sec. 13.7.9; Commentary: Sec. A.7.3.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | LF-3 Lens Covers. HR-
not required; LS-not | Lens covers on light
fixtures are attached with safety devices. (Tier 2: Sec. 13.7.9; | | | X | | Non-applicable due to
ASCE 41 Performance | | required; PR-H. | Commentary: Sec. A.7.3.4) | | | | | Level: "Life Safety (LS)" | # **Cladding and Glazing** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | CG-1 Cladding Anchors.
HR-MH; LS-MH; PR-
MH. | Cladding components weighing more than 10 lb/ft2 (0.48 kN/m2) are mechanically anchored to the structure at a spacing equal to or less than the following: for Life Safety in Moderate Seismicity, 6 ft (1.8 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 ft (1.2 m) (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.1) | | | X | | | | | |
 |
 | |--|--|------|------| | CG-2 Cladding Isolation.
HR-not required; LS-
MH; PR-MH. | For steel or concrete moment-frame buildings, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.3) | X | | | CG-3 Multi-Story Panels.
HR-MH; LS-MH; PR-
MH. | For multi-story panels attached at more than one floor level, panel connections are detailed to accommodate a story drift ratio by the use of rods attached to framing with oversize holes or slotted holes of at least the following: for Life Safety in Moderate Seismicity, 0.01; for Life Safety in High Seismicity and for Position Retention in any seismicity, 0.02, and the rods have a length-to-diameter ratio of 4.0 or less. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.4) | X | | | CG-4 Threaded Rods.
HR-not required; LS-
MH; PR-MH. | Threaded rods for panel connections detailed to accommodate drift by bending of the rod have a length-to-diameter ratio greater than 0.06 times the story height in inches for Life Safety in Moderate Seismicity and 0.12 times the story height in inches for Life Safety in High Seismicity and Position Retention in any seismicity. (Tier 2: Sec. 13.6.1; Commentary: Sec. A.7.4.9) | X | | | CG-5 Panel Connections.
HR-MH; LS-MH; PR-
MH. | Cladding panels are anchored out of plane with a minimum number of connections for each wall panel, as follows: for Life Safety in Moderate Seismicity, 2 connections; for Life Safety in High Seismicity and for Position Retention in any seismicity, 4 connections. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.5) | Х | | | CG-6 Bearing
Connections. HR-MH;
LS-MH; PR-MH. | Where bearing connections are used, there is a minimum of two bearing connections for each cladding panel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.6) | X | | | CG-7 Inserts. HR-MH;
LS-MH; PR-MH. | Where concrete cladding components use inserts, the inserts have positive anchorage or are anchored to reinforcing steel. (Tier 2: Sec. 13.6.1.4; Commentary: Sec. A.7.4.7) | X | | | | Glazing panes of any size in curtain walls and | | | | | | |------------------------|---|--|---|--|--|--| | | individual interior or exterior panes more than | | | | | | | CG-8 Overhead Glazing. | 16 ft2 (1.5 m2) in area are laminated annealed | | | | | | | HR-not required; LS- | or laminated heat-strengthened glass and are | | X | | | | | MH; PR-MH. | detailed to remain in the frame when cracked. | | | | | | | | (Tier 2: Sec. 13.6.1.5; Commentary: Sec. | | | | | | | | A.7.4.8) | | | | | | # **Masonry Veneer** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|-------------------| | M-1 Ties. HR-not required; LS-LMH; PR-LMH. | Masonry veneer is connected to the backup with corrosion-resistant ties. There is a minimum of one tie for every 2-2/3 ft2 (0.25 m2), and the ties have spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 36 in. (914 mm); for Life Safety in High Seismicity and for Position Retention in any seismicity, 24 in. (610 mm). (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.1) | | | X | | No masonry veneer | | M-2 Shelf Angles. HR-
not required; LS-LMH;
PR-LMH. | Masonry veneer is supported by shelf angles or other elements at each floor above the ground floor. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.2) | | | X | | No masonry veneer | | M-3 Weakened Planes.
HR-not required; LS-
LMH; PR-LMH. | Masonry veneer is anchored to the backup adjacent to weakened planes, such as at the locations of flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.3) | | | X | | No masonry veneer | | M-4 Unreinforced
Masonry Backup. HR-
LMH; LS-LMH; PR-
LMH. | There is no unreinforced masonry backup. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.2) | | | X | | No masonry veneer | | M-5 Stud Tracks. HR-not
required; LS-MH; PR-
MH. | For veneer with coldformed steel stud backup, stud tracks are fastened to the structure at a spacing equal to or less than 24 in. (610 mm) on center. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.) | | | X | | No masonry veneer | | M-6 Anchorage. HR-not required; LS-MH; PR-MH. | structure at a horizontal spacing equal to or less than 4 ft along the floors and roof. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.7.1) | | | X | | No masonry veneer | | M-7 Weep Holes. HR-not
required; LS-not
required; PR-MH. | In veneer anchored to stud walls, the veneer has functioning weep holes and base flashing. (Tier 2: Sec. 13.6.1.2; Commentary: Sec. A.7.5.6) | | | X | | No masonry veneer | | M-8 Openings. HR-not required; LS-not required; PR-MH. | For veneer with cold-formed-steel stud backup, steel studs frame window and door openings. (Tier 2: Sec. 13.6.1.1, 13.6.1.2; Commentary: Sec. A.7.6.2) | | | X | | No masonry veneer | # Parapets, Cornices, Ornamentation, and Appendages | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|--|---|----|-----|---|---------| | PCOA-1 URM Parapets
or Cornices. HR-LMH;
LS-LMH; PR-LMH. | Laterally unsupported unreinforced masonry parapets or cornices have height-tothickness ratios no greater than the following: for Life Safety in Low or Moderate Seismicity, 2.5; for Life Safety in High Seismicity and for Position Retention in any seismicity, 1.5. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.1) | | | X | | | | PCOA-2 Canopies. HR-not required; LS-LMH; PR-LMH. | Canopies at building exits are anchored to the structure at a spacing no greater than the following: for Life Safety in Low or Moderate Seismicity, 10 ft (3.0 m); for Life Safety in High Seismicity and for Position Retention in any seismicity, 6 ft (1.8 m). (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.2) | | | X | | | | PCOA-3 Concrete
Parapets. HR-H; LS-MH;
PR-LMH. | Concrete parapets with height-to-thickness ratios greater than 2.5 have vertical reinforcement. (Tier 2: Sec. 13.6.5; Commentary: Sec. A.7.8.3) | | | X | | | | PCOA-4 Appendages.
HR-MH; LS-MH; PR-
LMH. | Cornices, parapets, signs, and other ornamentation or appendages that extend above the highest point of anchorage to the structure or cantilever from components are reinforced and anchored to the structural system at a spacing equal to or less than 6 ft (1.8 m). This evaluation statement item does not apply to parapets or cornices covered by other evaluation statements. (Tier 2: Sec. 13.6.6; Commentary: Sec. A.7.8.4) | | | X | | | # **Masonry Chimneys** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |---
---|---|----|-----|---|---------| | MC-1 URM Chimneys.
HR-LMH; LS-LMH; PR-
LMH. | Unreinforced masonry chimneys extend above the roof surface no more than the following: for Life Safety in Low or Moderate Seismicity, 3 times the least dimension of the chimney; for Life Safety in High Seismicity and for Position Retention in any seismicity, 2 times the least dimension of the chimney. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.1) | | | X | | | | MC-2 Anchorage. HR-
LMH; LS-LMH; PR-
LMH. | Masonry chimneys are anchored at each floor level, at the topmost ceiling level, and at the roof. (Tier 2: Sec. 13.6.7; Commentary: Sec. A.7.9.2) | | | X | | | #### **Stairs** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|--| | S-1 Stair Enclosures.
HR-not required; LS-
LMH; PR-LMH. | Hollow-clay tile or unreinforced masonry walls around stair enclosures are restrained out of plane and have height-to-thickness ratios not greater than the following: for Life Safety in Low or Moderate Seismicity, 15-to-1; for Life Safety in High Seismicity and for Position Retention in any seismicity, 12-to-1. (Tier 2: Sec. 13.6.2, 13.6.8; Commentary: Sec. A.7.10.1) | | | X | | | | S-2 Stair Details. HR-not
required; LS-LMH; PR-
LMH. | The connection between the stairs and the structure does not rely on post-installed anchors in concrete or masonry, and the stair details are capable of accommodating the drift calculated using the Quick Check procedure of Section 4.4.3.1 for moment-frame structures or 0.5 in. for all other structures without including any lateral stiffness contribution from the stairs. (Tier 2: Sec. 13.6.8; Commentary: Sec. A.7.10.2) | | | | X | Further investigation is required to verify stair connections. | # **Contents and Furnishings** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|---| | CF-1 Industrial Storage
Racks. HR-LMH; LS-
MH; PR-MH. | Industrial storage racks or pallet racks more than 12 ft high meet the requirements of ANSI/RMI MH 16.1 as modified by ASCE 7, Chapter 15. (Tier 2: Sec. 13.8.1; Commentary: Sec. A.7.11.1) | | | X | | | | CF-2 Tall Narrow
Contents. HR-not
required; LS-H; PR-MH. | Contents more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 are anchored to the structure or to each other. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.2) | | | X | | | | CF-3 Fall-Prone
Contents. HR-not
required; LS-H; PR-H. | Equipment, stored items, or other contents weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level are braced or otherwise restrained. (Tier 2: Sec. 13.8.2; Commentary: Sec. A.7.11.3) | | | X | | | | CF-4 Access Floors. HR-
not required; LS-not
required; PR-MH. | Access floors more than 9 in. (229 mm) high are braced. (Tier 2: Sec. 13.6.10; Commentary: Sec. A.7.11.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-5 Equipment on
Access Floors. HR-not
required; LS-not
required; PR-MH. | Equipment and other contents supported by access floor systems are anchored or braced to the structure independent of the access floor. (Tier 2: Sec. 13.7.7 13.6.10; Commentary: Sec. A.7.11.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | CF-6 Suspended | Items suspended without lateral bracing are free | | | | |------------------|--|--|---|---------------------------| | Contents. HR-not | to swing from or move with the structure from | | | Non-applicable due to | | required; LS-not | which they are suspended without damaging | | X | ASCE 41 Performance | | required; PR-H. | themselves or adjoining components. (Tier 2: | | | Level: "Life Safety (LS)" | | required; PK-II. | Sec. 13.8.2; Commentary: Sec. A.7.11.6) | | | | # **Mechanical and Electrical Equipment** | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |--|---|---|----|-----|---|---| | ME-1 Fall-Prone
Equipment. HR-not
required; LS-H; PR-H. | Equipment weighing more than 20 lb (9.1 kg) whose center of mass is more than 4 ft (1.2 m) above the adjacent floor level, and which is not in-line equipment, is braced. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.4) | | | X | | | | ME-2 In-Line
Equipment. HR-not
required; LS-H; PR-H. | Equipment installed in line with a duct or piping system, with an operating weight more than 75 lb (34.0 kg), is supported and laterally braced independent of the duct or piping system. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.5) | X | | | | | | ME-3 Tall Narrow
Equipment. HR-not
required; LS-H; PR-MH. | Equipment more than 6 ft (1.8 m) high with a height-to-depth or height-to-width ratio greater than 3-to-1 is anchored to the floor slab or adjacent structural walls. (Tier 2: Sec. 13.7.1 13.7.7; Commentary: Sec. A.7.12.6) | X | | | | | | ME-4 Mechanical Doors.
HR-not required; LS-not
required; PR-MH. | Mechanically operated doors are detailed to operate at a story drift ratio of 0.01. (Tier 2: Sec. 13.6.9; Commentary: Sec. A.7.12.7) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-5 Suspended
Equipment. HR-not
required; LS-not
required; PR-H. | Equipment suspended without lateral bracing is free to swing from or move with the structure from which it is suspended without damaging itself or adjoining components. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.8) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | | Equipment mounted on vibration isolators is equipped with horizontal restraints or snubbers and with vertical restraints to resist overturning. (Tier 2: Sec. 13.7.1; Commentary: Sec. A.7.12.9) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-7 Heavy Equipment.
HR-not required; LS-not
required; PR-H. | Floor supported or platform-supported equipment weighing more than 400 lb (181.4 kg) is anchored to the structure. (Tier 2: Sec. 13.7.1, 13.7.7; Commentary: Sec. A.7.12.10) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-8 Electrical Equipment. HR-not required; LS-not required; PR-H. | Electrical equipment is laterally braced to the structure. (Tier 2: Sec. 13.7.7; Commentary: Sec. A.7.12.11) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | ME-9 Conduit
Couplings. HR-not
required; LS-not
required; PR-H. | Conduit greater than 2.5 in. (64 mm) trade size that is attached to panels, cabinets, or other equipment and is subject to relative seismic displacement has flexible couplings or connections. (Tier 2: Sec. 13.7.8; Commentary: Sec. A.7.12.12) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | # Piping | EVALUATION ITEM | EVALUATION STATEMENT | С | NC | N/A | U | COMMENT | |---|---|---|----|-----|---|---| | | Fluid and gas piping has flexible couplings. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-2 Fluid and Gas Piping. HR-not required; LS-not required; PR-H. | Fluid and gas piping is anchored and braced to the structure to limit spills or leaks. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.4) | | | Х | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | PP-3 C-Clamps. HR-not
required; LS-not
required; PR-H. | One-sided C-clamps that support piping larger than 2.5 in. (64 mm) in diameter are restrained. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.5) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)"
 | PP-4 Piping Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Piping that crosses seismic joints or isolation planes or is connected to independent structures has couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.3, 13.7.5; Commentary: Sec. A.7.13.6) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### **Ducts** | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |---|--|---|----|-----|---|---| | D-1 Duct Bracing. HR-
not required; LS-not
required; PR-H. | Rectangular ductwork larger than 6 ft2 (0.56 m2) in cross-sectional area and round ducts larger than 28 in. (711 mm) in diameter are braced. The maximum spacing of transverse bracing does not exceed 30 ft (9.2 m). The maximum spacing of longitudinal bracing does not exceed 60 ft (18.3 m). (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.2) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-2 Duct Support. HR-
not required; LS-not
required; PR-H. | Ducts are not supported by piping or electrical conduit. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.3) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | | D-3 Ducts Crossing
Seismic Joints. HR-not
required; LS-not
required; PR-H. | Ducts that cross seismic joints or isolation planes or are connected to independent structures have couplings or other details to accommodate the relative seismic displacements. (Tier 2: Sec. 13.7.6; Commentary: Sec. A.7.14.4) | | | X | | Non-applicable due to
ASCE 41 Performance
Level: "Life Safety (LS)" | ### Elevators | EVALUATION ITEM | EVALUATION STATEMENT | C | NC | N/A | U | COMMENT | |--------------------------|---|---|----|-----|---|-------------| | EL-1 Retainer Guards. | Sheaves and drums have cable retainer guards. | | | | | | | HR-not required; LS-H; | (Tier 2: Sec. 13.7.11; Commentary: Sec. | | | X | | No elevator | | PR-H. | A.7.16.1) | | | | | | | EL-2 Retainer Plate. HR- | A retainer plate is present at the top and bottom | | | | | | | not required; LS-H; PR- | of both car and counterweight. (Tier 2: Sec. | | | X | | No elevator | | H. | 13.7.11; Commentary: Sec. A.7.16.2) | | | | | | | EL-3 Elevator
Equipment. HR-not | Equipment, piping, and other components that are part of the elevator system are anchored. | | | |---|---|---|-------------| | required; LS-not | (Tier 2: Sec. 13.7.11; Commentary: Sec. | X | No elevator | | required; PR-H. | A.7.16.3) | | | | EL-4 Seismic Switch. HR-not required; LS-not required; PR-H. | Elevators capable of operating at speeds of 150 ft/min or faster are equipped with seismic switches that meet the requirements of ASME A17.1 or have trigger levels set to 20% of the acceleration of gravity at the base of the structure and 50% of the acceleration of gravity in other locations. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.4) | X | No elevator | | EL-5 Shaft Walls. HR-
not required; LS-not
required; PR-H. | Elevator shaft walls are anchored and reinforced to prevent toppling into the shaft during strong shaking. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.5) | X | No elevator | | EL-6 Counterweight
Rails. HR-not required;
LS-not required; PR-H. | All counterweight rails and divider beams are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.6) | X | No elevator | | EL-7 Brackets. HR-not
required; LS-not
required; PR-H. | The brackets that tie the car rails and the counterweight rail to the structure are sized in accordance with ASME A17.1. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.7) | X | No elevator | | EL-8 Spreader Bracket.
HR-not required; LS-not
required; PR-H. | Spreader brackets are not used to resist seismic forces. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.8) | X | No elevator | | EL-9 Go-Slow Elevators.
HR-not required; LS-not
required; PR-H. | The building has a go-slow elevator system. (Tier 2: Sec. 13.7.11; Commentary: Sec. A.7.16.9) | X | No elevator | This page intentionally left blank. **Note:** for seismic design category D, E & F, the flexible sprinkler hose fitting must accommodate at least $1^{\prime\prime}$ of ceiling movement without use of an oversized opening. Alternatively, the sprinkler head must have a $2^{\prime\prime}$ oversize ring or adapter that allows $1^{\prime\prime}$ movement in all directions. Figure G-1. Flexible Sprinkler Drop. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-2. End of Line Restraint. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) ### **Partitions** Figure G-3. Mitigation Schemes for Bracing the Tops of Metal Stud Partitions Walls. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-4. Mitigation Schemes for Bracing the Tops of Metal Stud Partitions Walls. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Notes:** Glazed partition shown in full-height nonbearing stud wall. Nonstructural surround must be designed to provide in-plane and out-of-plane restraint for glazing assembly without delivering any loads to the glazing. Glass-to-frame clearance requirements are dependent on anticipated structural drift. Where partition is isolated from structural drift, clearance requirements are reduced. Refer to building code for specific requirements. Safety glass (laminated, tempered, etc.) will reduce the hazard in case of breakage during an earthquake. See Example 6.3.1.4 for related discussion. Figure G-5. Full-height Glazed Partition. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-6. Full-height Heavy Partition. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-7. Typical Glass Block Panel Details. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) # Ceilings Figure G-8. Suspension System for Acoustic Lay-in Panel Ceilings – Edge Conditions. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Note:** Compression strut shall not replace hanger wire. Compression strut consists of a steel section attached to main runner with 2 - #12 sheet metal screws and to structure with 2 - #12 screws to wood or 1/4" min. expansion anchor to structure. Size of strut is dependent on distance between ceiling and structure (I/r ≤ 200). A 1" diameter conduit can be used for up to 6', a 1-5/8" X 1-1/4" metal stud can be used for up to 10' Per DSA IR 25-5, ceiling areas less than 144 sq. ft, or fire rated ceilings less than 96 sq. ft., surrounded by walls braced to the structure above do not require lateral bracing assemblies when they are attached to two adjacent walls. (ASTM E580 does not require lateral bracing assemblies for ceilings less than 1000 sq. ft.; see text.) Figure G-9. Suspension System for Acoustic Lay-in Panel Ceilings – General Bracing Assembly. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-10. Suspension System for Acoustic Lay-in Panel Ceilings – General Bracing Layout. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Note: See California DSA IR 25-5 (06-22-09) for additional information. Figure G-11. Suspension System for Acoustic Lay-in Panel Ceilings – Overhead Attachment Details. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) #### a) Gypsum board attached directly to ceiling joists #### b) Gypsum board attached directly to furring strips (hat channel or similar) Note: Commonly used details shown; no special seismic details are required as long as furring and gypboard secured. Check for certified assemblies (UL listed, FM approved, etc.) if fire or sound rating required. Figure G-12. Gypsum Board Ceiling Applied Directly to Structure. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-13. Retrofit Detail for Existing Lath and Plaster. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-14. Diagrammatic View of Suspended Heavy Ceiling Grid and Lateral Bracing. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) A-A Main Runner at Perimeter **B-B Cross Runner at Perimeter** Figure G-15. Perimeter Details for Suspended Gypsum Board Ceiling. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) #### See figure 6.3.4.1-7 for connections of bracing and hanger wire to structure **Note:** Compression strut shall not replace hanger wire. Compresion strut consists of a steel section attached to main runner with 2 - #12 sheet metal screws and to structure with 2 - #12 screws to wood or $1/4^{\prime\prime}$ min. expansion anchor to concrete. Size of strut is dependent on distance between ceiling and structure ($I/r \le 200$). A 1" diameter conduit can be used for up to 6', a $1-5/8^{\prime\prime\prime}$ X $1-1/4^{\prime\prime\prime}$
metal stud can be used for up to 10'. See figure 6.3.4.1-6 for example of bracing assembly. Figure G-16. Details for Lateral Bracing Assembly for Suspended Gypsum Board Ceiling. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) #### **Light Fixtures** Figure G-17. Recessed Light Fixture in suspended Ceiling (Fixture Weight < 10 pounds). (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-18. Recessed Light Fixture in suspended Ceiling (Fixture Weight 10 to 56 pounds). (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) # **Contents and Furnishings** Figure G-19. Light Storage Racks. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Note:** Purchase storage racks designed for seismic resistance. Storage racks may be classified as either nonstructural elements or nonbuilding structures depending upon their size and support conditions. Check the applicable code to see which provisions apply. Figure G-20. Industrial Storage Racks. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-21. Wall-mounted File Cabinets. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-22. Base Anchored File Cabinets. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) **Note:** Engineering required for all permanent floor-supported cabinets or shelving over 6 feet tall. Details shown are adequate for typical shelving 6 feet or less in height. Figure G-23. Anchorage of Freestanding Book Cases Arranged Back to Back. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-24. Desktop Computers and Accessories. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) ### **Cantilevered Access Floor Pedestal** ### **Braced Access Floor Pedestal** (use for tall floors or where pedestals are not strong enough to resist seismic forces) Note: For new floors in areas of high seismicity, purchase and install systems that meet the applicable code provisions for "special access floors." ## Figure G-25. Equipment Mounted on Access Floor. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Equipment installed on an independent steel platform within a raised floor Figure G-26. Equipment Mounted on Access Floor – Independent Base. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Equipment restrained with cables beneath a raised floor Figure G-27. Equipment Mounted on Access Floor – Cable Braced. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Equipment anchored with vertical rods beneath a raised floor Figure G-28. Equipment Mounted on Access Floor – Tie-down Rods. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) # Mechanical and Electrical Equipment Note: Rigidly mounted equipment shall have flexible connections for the fuel lines and piping. Figure G-29. Rigidly Floor-mounted Equipment with Added Angles. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Supplemental base with restrained spring isolators Supplemental base with open springs and all-directional snubbers Supplemental base with open springs and one-directional snubbers Figure G-30. HVAC Equipment with Vibration Isolation. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-31. Rooftop HVAC Equipment. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-32. Suspended Equipment. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-33. Water Heater Strapping to Backing Wall. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-34. Water Heater – Strapping at Corner Installation. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-35. Water Heater – Base Mounted. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-36. Rigid Bracing – Single Pipe Transverse. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-37. Cable Bracing – Single Pipe Transverse. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) ### **Electrical and Communications** Figure G-38. Electrical Control Panels, Motor Controls Centers, or Switchgear. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Wall-Mounted Figure G-39. Freestanding and Wall-mounted Electrical Control Panels, Motor Controls Centers, or Switchgear. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage) Figure G-40. Emergency Generator. (FEMA E-74, 2012, Reducing the Risks of Nonstructural Earthquake Damage)